medusae of THE WORLD

VOLUME III

THE SCYPHOMEDUSAE

BY

ALFRED GOLDSBOROUGH MAYER

WASHINGTON, D. C.
Published by the Carnegie Institution of Washington

CONTENTS.

VOLUME III.

CARNEGIE INSTITUTION OF WASHINGTON
Publication No. rog, Vol. III

Copies of this Book
were first issuad
AUG 251910

Order Carybde		
Procharybdis tetraptera. . . . 506	Carybdea alata var. pyramis. 5	Chiropsalmus quadrumanus.515
Carybdea marsupialis...... 507	var.grandis........5 5 Ir	buitendijki............ 515
rastonii. 508	var. moseri...........512	quadrigatus...........516
xaymacana............. 509	murrayana.512	zygonema............ 517
aurifera...............510	Tamoya haplonema........5I3	Chirodropus gorilla........518
alata.................510	Tripedalia cystophora....554	
Order Stauromedusx	 519-540 $^{\text {a }}$
Eleutherocarpidx......... 519	Lucernaria walteri. 529	Haliclystus stejnegeri. 535
Cleistocarpidæ.............519	kükenthali............ 529	antarcticus........... 536
Tessera................. 522	haeckeli............... 529	kerguelensis........... 536
Tesserantha.............. 522	infundibulum.......... 529	Halimocyathus platypus... 537
Tesseraria............... 522	campanulata........... 533°	lagena 537
Depastrum cyathiforme.... 524	australis.............. $53{ }^{\circ}$	Craterlophus tethys....... 53^{8}
Stenoscyphus inabai........ 525	Kishinouyea nagatensis.....53 ${ }^{\text {r }}$	macrocystis. 55^{8}
	Haliclystus auricula....... 532	Capria sturdzzii 539
Lucernaria quadricornis. $\ldots 527$ pyramidalis.............. 528		Lipkea ruspoliana 540
Periphylidx. 5 541-544	Ephyropsidx......... $550-560$	Linuche aquila 560
Pericolpa quadrigata 542	Palephyra antiqua.........551	Collaspidx........... $561-567$
campana............. 542	pelagica............. 552	Atolla bairdii............. 563
tetralina............... 542	indica................ 553	forma valdivix..... 565
Periphylla hyacinthina..... 544	Nausithoe punctata........ 554	gigantea............... 565
forma dodecabostry-	clausi. 55^{6}	chuni................ 566
	challengeri............. $\cdot 556$	yvillei............. .566
forma regina 546	albatrossii 5.57	forma verrillii 567
Periphyllopsis braueri. 547	rubra................. 557	Atorellidæ
Nauphantopsis diomedex...548	picta................... 557	Atorella subglobosa 568
Paraphyllinidx. 5488 -550	Linuche unguiculata558	vanhoffeni............ 568
Paraphyllina intermedia . . . 549		
Order Semaeostomex. 569.630		
Pelagidx. $569-59 \mathrm{x}$	Dactylometra lactea. 583	Ulmaridæ...........604-630
Pelagia noctiluca ${ }^{\text {a }} 570$	quinquecirrha. 585	Floresca parthenia. 605
var. neglecta 574	africana.............. 5^{88}	Discomedusa lobata....... 607
cyanella.............. 574	ferruginaster........... 588	philippina............ 607
panopyra..... 575	longicirra.............. 589	Undosa undulata. 609
var. placenta 575	Kuragea depressa.......... 5^{89}	Dipulmaris antarctica6ro
flaveula................ 576	Sanderia malayensis. 590	Sthenonia albida..........6Ir
perla.................. 576	Cyaneidx............. 591-604	Phacellophora camtschatica .613
phosphora............ $57{ }^{6}$	Desmonema gaudichaudii... 593	sicula.............. 613
crassa................. 576	chierchiana............ 593	ambigua.615
Chrysaora hysoscella........ 579	Cyanea capillata.......... 596	Prnata..............616
var. blossevillei 58 5I	r. fulva. 600	
var. fulgida......... 58 r	var. versicolor. 600	Aurellia aurita........... 623
blossevillei var. plocamia 588 I	var. nozakii.6or	forma marginalis.... 627dubia 627
helvola. $5^{88 \mathrm{I}}$	annaskala............601	
var. calliparea 582	Drymonema dalmatina..... 603	solida................ 627
var. chinensis....... 5^{82}	gorgo................. 604	labiata............... 628
melanaster............. 5^{82}	Patera.................. 604	Aurosa furcata630
var. gilberti......... 5^{82}	Donacostoma.............604	

IV

Order Rhizostomæ..		
Rhizostomata pinníata. . $035-650$	Catostylus cruciatus...... 667	Versura anadyomene...... 686
Toreuma dieuphila........636	palmipes 667	maasi. 687
Cassiopea andromeda...... 637	tagi.................. 668	Labonema smithii 689
var. zanzibarica...... 639	stuhlmanni............ 669	Rhizostomata lorifera. . .691-697
var. malayensis. 639	orsini. 669	Thysanostoma thysanura . . 692
var. maldivensis. . . . 639	stiphropterus.......... 670	Lorifera lorifera 694
var. acycloblia........640	viridescens............ 670	var. pacifica......... 695
machana........... $64{ }^{\text {a }}$	ornatellus............. 670	flagellata. 695
frondosa.............. 647	tripterus.............. $67{ }^{18}$	Leptobrachia leptopus...... 696
ornata............... 648	purpurus...........671	Rhizostomata scapulata.697-7 II
var. digitata......... 648	Lychnorhiza lucerna 673	Rhizostoma pulmo........ 699
depressa.............. 649	bartschi.............. 674	var. lutea........... 703
var. picta.......... 649	Crambione mastigophora ... 676	var. octopus......... 703
mertensii 649	cookii. 677	var. corna. 703
ndrosia. 650	Mastigias papua........... 678	var. capensis. 703
Rhizostomata dichotoma 650-63	var. siderea......... 679	Rhopilema esculenta 704
Cephea octostyla. 659	var. sibogx. 680	hispidum. 706
var. coerulescens.... 653	ocellata 680	verrillii. 707
cephea............... 654	pantherina............ 68 r	Eupilema scapulare 709
var. conifera. 655	gracile...............6.68ı	Stomolophus meleagris.....750
var. dumokuroa. 656		var. fritillaria........71I
var. coerulea 657	Pseudorhiza aurosa. 682	Rhizostomata simplicia.712-714
var. setouchiana 657		Archirhiza aurosa.........712
typhlodendrium. 658	Phyllorhiza punctata 684	Haplorhiza simplex........713
Cotylorhiza tuberculata 659	Versura palmata........... 685	punctata..............713
Polyrhiza vesiculosa. 663	vesicata	Cannorhiza connexa........7I4
Rhizostomata triptera . .663-691	pinnata	Stomatonema reticula
Catostylus mosaicus 666		
Fossil Meduse		
Medusina radiata. 715	Acraspedites antiquus.786	Laotira cambria...........717
princeps..............715	Semæostomites zitteli.......716	Dactyloidites asteroides....717
deperdita..............715	Eulithota fasciculata 716	Rhizostomites admirandus . $7 \mathrm{7} \times 8$
Paraphyllites distinctus....715	Myogramma speciosum.....716	Brooksella alternata........718
Cannostomites multicirrata . 716	Medusina costata. 717	confusa. 7 78 8
Atollites minor..............776 zitteli. 716	geryonides............717	rhenana...............788
Appendix.		
Preoccupied Generic Names. 719	Urashimea globosa. 722	Microhydra ryderi 726
Corynitis $=$ Linvillea $\ldots \ldots . . .719$	'Turritopsis pacifica 722	Limnocnida...............726
Slabberia $=$ Dipurena $\ldots \ldots \ldots .719$	Rathkea octopunctata722	Fgina citrea 726
Turris and Tiara =Clavula. .719	var.grata...........722	Scyphomedusx $726-728$
Laodicea.................719	Nemopsis dofeini 723	Carybdea rastonii. ${ }^{\text {726 }}$
Hydromedusx.........720-726	Willsia pacifica. 723	alata................. 726
Pennaria tiarella........... 720	Polyorchis karafutoensis ...723	Haliclystus octoradiatus. . . 7^{26}
Corymorpha nutans........720	Spirocodon saltatrix. 724	Thaumatoscyphus dis-
Sarsia rosaria.............. 720	Obelia congdoni. 724	tinctus 727
japonica.............. 720	Staurophora mertensii. 724	Parumbrosa polylobata 7^{28}
Eleutheria............... 721	Cubaia gemmifera........ 725	Ephyropsites jurassicus.... 728
Cladonema radiatum72I	Craspedacusta sowerbii. . . . 725	

MEDUSAE OF THE WORLD.

THE SCYPHOMEDUSAE.

INTRODUCTION.

The present volume is a continuation of the work the two former parts of which dealt with the Hydromedusæ. The acknowledgments which I was privileged to render in the introduction to the first volume need not here be repeated, pleasurable to me as such a repeti-
tion would be. Suffice it to say that the work was commenced in 1802 at the suggestion of Dr. Alexander Agassiz whose generous aid enabled me to pursue these studies for many years under the most advantageous conditions; and apart from the sense of personal gratitude I cherish toward Dr. Agassiz I hope that enough of scientific worth may be found within these volumes to cause it to appear that I have made appreciative use of the opportunities he so magnanimously accorded to me. Throughout the years I have hoped that Dr. Agassiz might live to see this work and that he might be pleased by this fruit of his inspiration, but on March 27, Igro, the great student of the oceans died upon the sea, only a few weeks before the publication of these volumes.

Since the first two volumes passed under the press I have been most kindly aided by the United States Bureau of Fisheries and by the National Museum of the United States, at Washington. The authorities of the former permitted me to study the important collection
of Scyphomedusæ recently made by the Albatross in the Philippine Islands, and those of the latter institution were so courteous and helpful as to set aside for my use a table in the Smithsonian building in order that I might study this collection to the best advantage: It is due especially to Dr. Hugh M. Smith, Deputy Commissioner of the Bureau of Fisheries, and to Dr. Richard Rathbun, Assistant Secretary of the Smithsonian Institution that I owe these highly appreciated favors.

Plates 6 I and 64 A and several text-figures are taken from drawings made from nature by my friend, the late Prof. William K. Brooks. These drawings were most kindly presented soon after the death of Professor Brooks. They will serve as memorials of the rare skill in observation and in draftsmanship of the great naturalist who made them.

SCYPHOMEDUSE

Medusiform Cnidaria with tentacle-like, entodermal filaments upon the subumbrella floor of the stomach-cavity. With entodermal gonads, and without a velum such as is characteristic of the Hydromeduse. Development by strobilization from scyphostoma larvæ.

There is but little evidence to support the supposition that the Scyphomedusæ have been derived from the Hydromedusx. The medusa shape of the sexual generation in both has in all probability been acquired independently. Indeed, various animals have assumed the external appearance and peculiar mode of locomotion by pulsation which is characteristic of the medusa. Such for example are the protozoan Craspedotella and the holothurian Pelagothuria. Moreover there is reason to believe that the medusa-bell of the Narcomedusæ
been acquired independently of and is not homologous with the bell of the Leptolina meduse. Goette, 1907, Zeit. für wissen. Zool., Bd. 87, p. 289.)
The peculiar velum of the Carybdeidæ among the Scyphomedusæ is a structure of the subumbrella, not of both subumbrella and exumbrella as in Hydromedusx. It may be regarde as a parallelism, and not genetically related to the velum of Hydromedusæ. The exumbrella nerve-ring, found commonly in Hydromedusx, does not exist in the Scyphomedusæ, but is
replaced by a subumbrella plexus of fibers extending bet also radially inward from these ganglionic centers. There is also a diffuse nerse-organs and ectodermal network over the subumbrella. The subumbrella alone is sensitive to stimuli, the ectodermal network over the subumbrella. The subumbrella alone is sensitive to stimuli, the
exumbrella being non-sensory, but covered with a nematocyst-bearing epithelium.

In the Scyphomedusæ the mature, sexual products are found in the entoderm,
they are usually in the ectoderm in Hydromeduse. The velum which is universally present in Hydromedusæ is absent in Scyphomedusæ. The 4 interradial, gastric septa which are always seen in the scyphostoma larva of Scyphomedusæ are not found in the polyp stage of Hydromedusx.
When we come to consider the relationships of the several orders constituting the Scyphomedusx themselves we meet with difficulties which render our classification only tentative. 1907 (Ergeb. und Fortschritte der Zool., Bd. I, p. 189), and by Bigelow, Igoo (Mem. Museum, 1007 (Ergeb. und Fortschritte der Zool., Bd. I, p. 189), and by Bigelow, 1909 (Mem. Museum
Comp. Zool. at Harvard College, vol. 37, p. 13). Marked advances over Haeckel's artificial classification were made by Claus, 1878 , 1883 , who showed that the Carybdecidæ are a very aberrant group not closely related to other Scyphomedusæ, and not descended from the Stauromedusæ as Haeckel believed. As Claus showed, the interradial, gastric septa in Carybdeidæ may be newly arisen fusions of the entodermal walls of the exumbrella and subumbrella and not derived from the interradial tæniolæ of the scyphostoma. Unfortunately, however, no one tionships must remain doubtful. Claus, I883, and Vanhöffen i 8 knowledge of their relasupposed importance of the presence or absence of the interradial , castric septa in the to fication of sexually mature Scyphomedusæ but we must remember that these in the classiSemæostomæ and found in Coronatæ, yet these two orders are closely related. Moreover, interradial gastric septa are found both in Stauromedusæ and Carybdeidæ yet all modern students agree that these groups are widely divergent. The sessile Stauromeduse certainly approach very closely in structure to the type of the scyphostoma, but this may be the result degeneracy due to their sedentary habit.
Vanhöffen, I892, in a masterly paper called attention to the importance of the annular
urrow and marginal, exumbrella sculpturing of the bell in certain furrow and marginal, exumbrella sculpturing of the bell in certain of Haeckel's Discome-
dusæ, and he grouped these under the designatio shown that in Nausithoë, which is a typical member of the Coronata, the interradial septa of the central stomach are derived from the 4 tæniolæ of the scyphostoma. These septa ever, absent in the medusa-stage in Semæostomeæ and Rhizostomæ, although they are found in the scyphostoma.

All evidence both anatomical and embryological shows that the Rhizostomæ are descended directly from the more simply organized Semæostomex. It is probable that the Coronate and Semæostomex are not descended one-from the other, but are derived from some common ancestral stock which has disappeared. The Stauromeduse may represent a highly specialized attached habit of life. The Carybidx are so aberrant and our being due to their sessile, ment is so imperfect that we have not yet been able to determine their relationships to other Scyphomedusæ.

The habits and distribution of the several orders of Scyphomedusæ are characteristic The Stauromeduse are found only in the Arctic and Antarctic regions and in cold seas, and are unknown from the tropics; thus furnishing us with an interesting problem in distribution. The planula is not pelagic but creeping and is devoid of cilia, and the medusæ are sessile or creeping, and do not pulsate rhythmically. They affix themselves to seaweeds and rocks and rarely move from their places of attachment. They are probably degenerate forms although their relationship to other Scyphomedusæ is uncertain. They are confined to
the shores, but may be carried far from their normal habitats upon drifting seaweed.

The Orders of the Scyphomedusa.

	Carybdeidx.	tauromedusa.	Coronate.	Semxostomex.	Rhizostomx.
Form of bell.	Cubical with interradial angles, and perradial sides.	Pyramidal, usually attached to objects by aboral apex.	Discoidal with annular furrow, and marginal zone of pedalia in exum- brella.	Discoidal without annular furrow or pedalia.	As in Semxostome
Margin of bell.	No lappets but with an annular membane formed from the subumbrella and constituting a velum.	Usually with 8 adradial lobes which bear the tentacles	Cleft into lappets.	Cleft into lappets.	Cleft into lappets.
Tentacles.	4 interradial, single or in clusters. Ten tacles hollow, lashlike, and mounted upon spatula-shape subumbrella.	Usually 8 adradia clusters of hollow, knobbed tentacle	Arising from clefts between lappets.	Arising from subumbrella or from clefts between lappets.	Absent. In one genus (Lobonema) pets have been metamorphosed into tentacle-like organs.
Sense-organs.	4 perradial clubs set in niches on sides of bell. Ocelli and lithocyst present.	When present 8 (4 perradial, 4 inter radial) anchors without ocelli or lithocysts:	Arising from clefts between lappets. An entodermal mass of concretion always present.	As in Coronata.	As in Coronate.
Interradial septa	Present.	Present.	Present.	Absent.	Absent.
Mouth.	Cruciform, simple.	Cruciform, simple.	Cruciform, simple.	Unitary. Cruciform, usually with vei-like lips.	Numerous mouths surrounded by mo tile tentacles a borne on 8 ad like processes. 1ke processes.

The Carybdeidæ are highly specialized forms which are confined to tropical and warm seas. They live upon the bottom in shallow water along coasts, and are not commonly found upon the surface until nearly mature. Their developmental stages are practically unknown and their exact relationship to the other orders of Scyphoméduse is problematical. In common with the Stauromedusæ and Coronatæ they have 4 perradial stomach-pouches. They bear a remarkable, but wholly superficial, resemblance to the Hydromedusx in ere she the bell and in the presence of an annular diaphragm which constricts the aperture of tella in Carybdeidæ whereas both exumbrella and subumbrella take part in its formation in Hydromeduse.

The Coronatæ are deep-sea and pelagic forms and are therefore of world-wide distribution in common with other creatures of similar habits.

The Semæostomex are mainly coastal forms which develop through strobilization from scyphostoma larvx. The genus Pelagia is peculiar, however, in that the larva is not attached, but remains free-swimming and develops directly into the medusa, and thus it is that medusa of this genus are widely distributed, independe cyaneid $æ$, are practically confined to the Arctic wand Antartic and to cold seas; whereas the Pelagide are found only in warm oceans. On the other hand the genus Aurellia is of world-wide distribution.

The Rhizostomæ form a well-defined order which are clearly descended from the Semæostomex. They are confined to tropical and warm seas and are most abundant in the Malay Archipelago. They develop through strobilization from scyphostoma larvæ, and are therefore confined to coastal waters of a depth suitable for the maturation of their attached larva.

In the Semæostomeæ and Rhizostomæ the egg develops into a pyriform, ciliated planula which is set free from the mouth-folds of its parent and swims freely through the water. Soon
occur at the non-attached, upper pole of the larva. 4 perradial stomach-pouches develop, 2 being partially ectodermal and derived in some measure at least from the invaginated ectoderm of the œesophagus, the other 2 pouches being entodermal and derived from the entoderm of the stomach of the larva. These perradial pouches are separated by 4 interradial septa which finally become perforated near the margin forming a peripheral ring-sinus. 4 funnel-like the hypostome of the larva, and tentacles develop around the into these 4 interradial septa from the larva splits by transverse clefts into a series of discoidal, free-swimming, ephyra larvæ, and the original corona of tentacles is cast off and dies while a new set of tentacles and a 4cornered mouth may develop at the upper end of the remaining part of the larva. In some species, and under certain conditions, this strobilization may be monodiscus and give rise to but a single ephyra, while in others from ro to 30 ephyre may arise from a single scyphostoma. Details of this peculiar process of delamination and regeneration, and of the larval stages in general, will be found in Korschelt and Heider's text-book of the embryology of invertebrates, part I, I895, pages 102 to 122, and throughout the text of the present work.. See especially Cyanea arctica, Aurellia aurita, Pelagia, Chrysaora, Cotylorhiza tuberculata, and Cassiopea amachana.
With reference to the relationships between Hydromedusæ, Scyphomedusæ, and actinians, Goette's announcement that the cesophagus of the scyphostoma of Scyphomedusæ is formed of invaginated ectoderm seemed to suggest a close relationship between the scyphopolyp and he œesophagu. Hadzi, rgo7, however, re-affirms the work of Claus and supports the view that. ut evaginated from the phostoma is lined on the inside with entoderm and is not invaginated dermal according to Claus and Hadzi, whereas, 2 of the primary stomach-pouches are at least partially ectodermal and 2 wholly entodermal according to Goette.

We know, however, from Conklin's study of the development of Linuche, and Hyde's research upon Aurellia, that gastrulation in one and the same species may occur either through
invagination or by ingression, and judging from the mass of evidence which has been accumylated we can not doubt but that the mouth of the scyphostoma of one and the same species may be formed either by invagination, or by a simple breaking through of both entoderm and ectoderm in which the entoderm takes the more active part, or even by an evagination of entoderm. The three processes may thus be closely related and the manner of operation dependent upon which layer takes the initiative and assumes the more active part. It is therefore misleading to attach any deep morphological significance or to draw any sweeping conclusions in respect to the phylogeny of the Scyphomeduss from this process. Indeed, long ago our faith in the rigid application of the germ-layer theory has become so shaken that the
discussion between the Goette and the Claus schools has lost most of its significance.

According to the Claus-Hadzi view the Scyphomeduce are more closely related
Hydromedusx than they are to the actinians. Certainly the histological characters of the germ layers of the scyphostoma resemble the hydropolyps rather than the actinozoa, although both are so closely similar that no great weight can be attached to this fact. Hérouard, noog Comptes Rendus, Paris, tome 148, page 1225), supports the opposite view from histological evidence, for he finds that the cellular investment of the pharynx of Scyphomedusæ and scyphostoma larvx is similar in character to that of the gullet of Anthozoa, thus indicating a genetic relationship between the Anthozoa and Scyphomeduse.

According to Goette the 4 primary stomach-pouches are actively evaginated from the cenral stomach-cavity and are of mixed ectodermal and entodermal origin. According to Clausby the infolding of the 4 entodermal foldings in the stomach-wall which constitute the trniol
It is extraordinary that this contention should have persisted so long without a final settlement of views.

The table on the opposite page will serve to present the question more clearly. The scyphostoma larva of Nausithoë bears a remarkable superficial resemblance to hydroids, being elongate, branched, and incased by a horny perisarc. It infests sponges. - In the majority of the Scyphomedusx the sexes are separate, but in Chrysaora and in certain Rhizostomæ the medusæ are hermaphroditic.

	$\begin{gathered} \text { Hydropolyp } \\ \text { (hydroids). } \end{gathered}$	Scyphopolyp (Scyphostoma), according to Claus-Hadzi.	Scyphopolyp (Scyphostoma), according to Goette.	$\underset{\text { Actionozoa) }}{\text { And }}$
Inner lining of cesopha-	Evaginated and entodermal.	Evaginated and entodermal.	Invaginated and ecto- dermal.	Xnvaginated and ecto- dermal.
Teniolx.	one.	4 wholly of entodermal origin, but with ecto dermal muscle-strands.	4 of mixed ectodermal and entodermal origin, but with ectodermal but with ectode muscle-strands.	Septa composed mainly of entoderm, with ento dermal muscles.
Muscle-strands.	Formed from basal elongations of both ectocerm and entoderm cells.	Of ectodermal origin.	Of ectodermal origin.	Mainly entodermal but some ectodermal in origin.
Stomach-carity.	Unitary, but often with irregular, longitudinal cells. (See Had I882, Jena. Zeitsch. Naturw.,Bd. 15,P.509.	With 4 primary pouches of purely entodermal origin simply separated one from another by 4 entodermal inoldings.	2 of the primary pouche are partially ectoder mal and 2 of purely entodermal origin. entodermal origin. They grow actively outward from sides of central stomach.	With lateral pouches.
Ripe sexual products.	In ectoderm.	In	In	In en
Intermediate lamella.	Structureless, free from cells.	Containing cells.	Containing cells.	Containing cells.
Mode of reproduction.	Medusæ develop by budding.	Meduse develop by strobilization.	Meduse develop by strobilization.	No medusx developed.

Romanes and Eimer found that if the marginal sense-clubs of Scyphomedusæ be removed a more or less complete paralysis results, although the disk remains capable of responding temporarily to any stimulus. Bethe, 1903, found that in Rhizostoma pulmo and Cotylorhiza tuberculata the pulsation-stimulus is nervous in nature, and there are many analogies between "all or none" principle applies to meduse, as does also the phenomenon of the insensibility of the medusa to stimulation while in systole, and the extra systole and compensating period of rest. Mayer, working upon Cassiopia xamachana, finds that the sea-water is a balanced fluid, the stimulating tendency of its sodium being exactly counterbalanced by the inhibiting effects of its magnesium, calcium, and potassium. The pulsation stimulus arises in the mar ginal sense-clubs and is due to the constant formation of sodium oxalate in the entoderma cells at the distal end of each club. This precipitates the calcium chlorides and sulphate of the sea-water forming the insoluble calcic oxalate crystals of the sense-club, and setting free sodium chloride and sulphate the cations of which are powerful nervous stimulants, and In the hydromedusp on the other hand the function of the control of pulsation is no localized in the sense-organs for any part of the bell-rim will serve to maintain the bell in pulsation.

It is interesting to note that whatever the effect of the several cations, sodium, magnesium, calcium, and potassium, may be upon the neuromuscular system, their effects upon the movement of cilia is the exact opposite. Whatever stimulates muscles inhibits cilia, and vice versa

The gastric tentacles, which arise from the subumbrella wall of the stomach on the side of the interradial septa are very characteristic and constant structures in Scyphomedusx They are entodermal with solid cores of mesogloea, The maginal butaces tunction is unknown

Tare usually but not encased outwardly by ectoderm which is richly besprist of an axial core of entodermal cells sense-clubs are highly specialized tentacles which have been transformed into sensory centers Ocelli may or may not be present and when found they may be of ectodermal or of entoderma structure; but concretions of crstalline nature are invalable found in the entodermal cell at the distal end of the club in all forms exhibiting rhythmical pulsation. The gonads are follicular foldings of the entodermal subumbrella floor of the stomach

Order CARYBDEID.e Gegenbaur, 1856.

Carybdezide, Grgernave, 1856, Zeit. fïr wisen. Zool., Bd. 8, p. 2I4.

Bd. r, p. 197. CHARACTERS OF THE ORDER.
Scyphomedusæ with 4 perradial, knob-shaped, marginal sense-organs which are situated within niches upon the sides of the bell. Each sense-organ contains an entodermal concretion, within niches upon the sides of the bell. Each sense-organ contains an entodermal concretion, 4 wide perradial sacs extend outward from the central stomach into the interstitial space of the bell. These sacs are incompletely separated one from another by 4 narrow interradial septa. There are 8 gonads each one of which is leaf-shaped and attached along one side to an interradial septum, from which it extends outward into the gastrovascular space of the bell. The bell-margin is not cleft into lappets. The subumbrella forms an annular diaphragm called the velarium which partially closes the opening of the bell-cavity.

The perradial sense-organs in the Carybdeidæ are knob-shaped, and are set within niches upon the sides of the bell. The stalk of each knob is hollow and connected with the gastrovascular system of the bell. The knobbed end of each club contains a large entodermal concretion and one or more ectodermal eyes (plate 56 , fig. $6^{\prime \prime}$). These eyes are placed on the inner or centripetal side of the club and look inward into the bell-cavity. The larger eyes are provided with a doubly convex lens, back of which is a cup-shaped space occupied by the lens-capsule and the retina. The retina is made up of a single layer of cells forming a hollow cup, into which the lens with its capsule fits. The central space of the retinal cup is clear and glassy. This transparent region is enveloped by a deeply pigmented part and and prism-shaped, others short and pyramidal; and still others long and pyramidal. The deep-lying ends of these cells are more or less pigmented, while their outer parts are transparent, and being packed closely together, they form the vitreous center of the retinal cup. (See Conant, I898; Berger, 1900; etc.)

The tentacles of the Carybdeidæ are interradial and arise at a level slightly above the apparent bell-margin, although they are actually structures of the subumbrella. Their proximal parts are developed into tough, gelatinous, wing-shaped or spatula-shaped structures (pedalia), which probably serve as keels to steer the animal in its course through the water. The long, distal ends of the tentacles are cylindrical and highly contractile, and their outer connected with the gastrovascular space of the bell. This is accomplished by the interradial septa being incomplete near the bases of the tentacles and thus the lumen of each tentacle is placed in direct connection with the gastrovascular spaces of the two adjacent perradial pouches. The flexible parts of the tentacles are armed with nematocysts, the stinging power of which is so great that the name "Sea Wasp" is commonly given to these medusx.

The velarium is an annular membrane which extends inward from the bell-margin, forming a diaphragm which partially closes the cavity of the subumbrella; superficially it bears a close resemblance to the velum of the Hydromedusx, but is separated from the exumbrella by means of a continuous sheet of entodermal tissue which penetrates the gelatinous
substance of the bell all around the bell-margin, and connects the entoderm of the intermediate lamella with the ectoderm of the outer surface of the bell. It thus forms a ring of entoderm around the bell-margin which completely separates the ectoderm of the subumbrella side of the velarium from that of the exumbrella. At points other than those occupied by senseorgans or tentacles this vascular, entodermal lamella forms a simple, flat sheet, but when it comes to the tentacle-bases, or sense-organs, it makes a loop upward over them. Thus the tentacles and sense-clubs are structures of the subumbrella oniy, for they lie below the entodermal lamella which isolates them completely from the exumbrella. What the philogenetic significance of this lamella may be we do not know, and until this is discovered we can not be certain that the velarium of the Carybdeidæ is not strictly homologous with the velum of the

Hydromedusæ; for it constitutes the only important point of difference in the velar diaphragm of the two sorts of animals. The velarium is commonly bound to the wall of the subumbrella by 4 solid, bracket-1ike supports, the frenulx, one of which is found in each perradius. There is also a more or less complicated system of entodermal canals or pouches which extend into the substance of the velarium from the gastrovascular space of the bell.

There has been a tendency among modern authors to regard the velarium as being com posed of a series of fused lappets, the pouches being remnants of lappet-pouches. We hav seen is as entire as in the adult.

There are 4 groups of gastric cirri, or phacelli, in the interradial corners of the centra stomach, at the inner ends of the 4 interradial septa, and this feature alone would distinguish these forms from the Hydromeduse in which no such structures have been observed. The gonads, also, are entodermal instead of ectodermal when mature as in Hydromedusæ. Both the gonads and gastric cirri are structures of the subumbrella, as is also the entire muscula system.

There is a well-developed nerve-ring on the bell-cavity side of the subumbrella near the margin. This ring forms 4 loops upward to the 4 perradial sense-organs (plate 57, fig. 2). There are 8 ganglia upon the nerve-ring, 4 perradial and 4 interradial. Each of the perradial anglia sends off 2 nerve-roots, which pass through the gelatinous substance of the subumbrella
and they extend down the inner (centripetal) side of the stalk of the sensory-club. The 4 interradial ganglia are situated at the bases of the tentacles into which they probably send nerve-fibers.

The Carybdeidx are inhabitants of the warmer waters of all the oceans, and none of them has been found in the Polar seas. Most of them have been taken in the open ocean, but they are also found swarming in harbors and other places near land. When young they appear to be bottom forms, but they usually come to the surface when mature.
found that in Tripedalia the ovum develops into a free-swimming planula, which soon settles down upon the bottom and becomes a hydra-like polyp with a mouth and 4 tentacles. Haacke 1887 , found a very young individual of Carybdea rastoniii in which a short style canal extended upward from the upper floor of the central stomach to the aboral apex of the bell, and he believes it possible that this structure may represent the remnant of some connection between he young medusa and some form of scyphopolyp nurse, but this is wholly problematical Haeckel, 1880, believed that the Carybdeidx were descended from the Stauromedusx, s, according to him, were also his Periphyllidæ and the Discomedusæ. He believes that morphologically the Carybdeidæ are intermediate between the Periphyllidæ and the DiscoWe must first learn more of the early embryonic stages of the medusæ of the Carybdeidx and Stauromeduse before we venture to state how they may be related in philogeny to othe Scyphomedusx. They have perradial stomach-pouches which are partially separated by interradial septa as in the Stauromedusæ; indeed Goette, 1887, would consider the Carybdeidæ as an off-shoot of or cousins of the Stauromedusx.
Most of our knowledge of the anatomy of the Carybdeidæ is due to the labors of Claus, 1878; Haeckel, 1880 ; Schewiakoff, I889; Conant, 1898; and Berger, 1900.
Berger, 1900 , reports upon a few physiological experiments upon the reactions of Carybdeidæ (see C. xaymacana). A synopsis of the genera of the Carybdeidæ follows:

Carybdea Pêron and Les supports (frenulx). Tamoya F. Mïller, 185 perradial, hollow ar Tripedalia Conant, I897

Genus (?) PROCHARYBDIS Haeckel, I880

Procharydiss, Haxckris, 1880, Syst. der Medusen, P. 437.
The type species is P. tetraptera Haeckel from the Sunda Islands, Indian Ocean. It may prove to be only a species of Carybdea which is regenerating its velum or is immature.

eneric characters.

Carybdeidæ with 4 simple, interradial tentacles with pedalia. Velarium simple, without velar canals or frenulx.
P. turricula and P. fagellata of Haeckel, loc cit., p. 438, are both too inadequately known to be profitably retained in scientific literature. P. cuboides Haeckel, is, I believe, a young stage of the common Carybdea rastonii. The briefly described Procharybdis securigera Haeckel, loc cit., p. 640, from the Pacific coast of Central America, may be C. rastonii, but is said to have tentacles which terminate each in a knob. This character is seen in young individuals of Carybdea.

Procharybdis tetraptera Haeckel.

Procharybdis tetraptera, HAscrexI, I880, Syst. der Medusen, P. 437, taf. 25, fign. $3,4$.
Bell dome-like with thick walls, 30 mm . high, 20 mm . wide. 4 very large, fat, expanded, simitar-shaped pedalia, with blunt outer ends; these pedalia are nearly as long as the bellother known form of Carybdeidæ. The 4 perradial sense-clubs are set in niches nearly as far above the bell-margin as the width of the bases of the pedalia. Each sense-club is small and apparently contains only a single very large eye and an entodermal concretion. Each of the flexible, hollow tentacles tapers to a pointed end. They are ringed with nematocysts and are about 1.5 times as long as bell-height.
The velarium is without velar canals or bracket-like frenulæ, and its margin is entire. It is only about twice as wide as the tentacles and appears to be very rudimentary. It occurs to me that this velarium may be regenerating after having been lost through accident. Should he velanum have velar canals and frenulæ, the medusa The stomach is small, wide, flat, with

The stomach is small, wide, flat, with 4 large, pointed lips. There are 4 pairs of gastric rise to 20 to 30 filaments on one side. The 8 gonads are developed as in other species of Carybdeidæ on both sides of the 4 interradial septa.
Haeckel describes this medusa from a single preserved specimen found in the Sunda Archipelago, Indian Ocean.

Genus CARYBDEA Peron and Lesueur, r809.

The type species is C. marsupialis Péron and Lesueur, of the Mediterranean

generic characters

Carybdeidæ with 4 simple, interradial pedalia and tentacles. Velarium supported by 4 perradial, bracket-like frenulx which bind it to the subumbrella. Velar canals present. Stomunknown.
Péron and Lesueur spell this generic name Carybdea; Agassiz, 1862, Cont. Nat. Hist. U. S., vol. 4, p. 173, changed it to Charybdea.

All the species of this genus are inhabitants of warm seas. None have been taken north of Cape Cod on the North American coast, or north of the Mediterranean in Europe. Owing to the slight differences between them, it is exceedingly difficult to separate the species one
from another. The most characteristic features for specific distinction are the shape and size of the pedalia and the number and character (branched or unbranched) of the velar canals. Carybdea marsupialis, C. rastonii, and C. xaymacana are very closely related, if not mere varieties, of one and the same medusa. They are found in the Mediterranean, tropical Atlantic, and Pacific.
C. pyramis, which appears to be identical with Haeckel's C. obeliscus and C. alata is distinguished by its long, simitar-shaped pedalia. It comes from the tropical Atlantic.
C. grandis and C.moseri are closely related tropical Pacific forms and may be mere local varieties, one of the other, indeed Bigelow, I909, believes them to be mere growth stages of
one and the same medusa, C. moseri being the younger. C. grandis is possibly identical with Bursarius cytherea Lesson (= Tamoya bursaria Haeckel) but the descriptions of the lastnamed medusa are so vague that it must, I think, be dropped from our lists.
C. murrayana Haeckel is distinguished by its large number of profusely branched velar canals. In other respects it closely resembles C. marsupialis, of which form it may indeed be a mere variety.

Semper's Philippine Island Carybdea, called C. philippina by Haeckel, may be identical with C. moseri, but is too vaguely mentioned to be recognizable.
C. verrucosa Hargitt, r903, is a very young form, too immature for identification
than in any other species.
Haeckel's genus Procharybdis appears to be composed of immature or imperfectly known young specimens of Carybdea. It is not improbable also that future studies will show that Haeckel's Procharagma is actually Carybdea.

In some of the species of Carybdea the gastric cirri at the interradial corners of the stomach are in the form of branched tufts. The mature eggs are set free from the gonads and float in the gastric pouches, where they undergo a part of their development; but the larval stages remain practically unstudied.
under the description of this species.

Carybdea marsupialis Peron and Lesueur.

Plate 58 , figs. ito 5 .

Bell prismatic, 4 -sided, somewhat constricted near aboral apex, and with flat top. It is 40 mm . high and 30 mm . wide at level of velarium. The apex of bell, the pedalia, and is 40 mm . high and 30 mm . wide at level of velarium. The apex of bell, the pedalia, and the interra dial ridges of the exumbrella are besprinkled with numerous, quite regularly spaced, long and 10.5 mm . wide at their widest parts. The fexible, lash-like, filamentous parts of the tentacles are very contractile and range in length from 2 to I2 times as long as bell-height. These tentacles are hollow and regularly ringed with nematocysts.

The 4 perradially placed sense-clubs are each set in a niche almost covered by a gelatinous flap. These sense-clubs are 5 mm . above the velar margin of the bell. Each sensewhich lack lenses. All 6 eyes are directed inward so as to look into the bell-cavity, and are of ectodermal structure. Besides the 6 eyes there is a large terminal mass of entodermal cystalline concretions.

The velarium is supported by 4 bracket-shaped buttresses (frenulz), which bind it to the subumbrella in the radii of the sense-clubs. There are usually 3 (occasionally 4). branched, blindly-ending centripetal vessels in each octant of the velarium. These vessels branch quite complexly and irregularly, but do not anastomose. The base of the stomach is wide and flask-shaped, but the throat-tube is very narrow and with 4 simple, lanceolate lips. Altogether the manubrium is not more than one-third as long as the depth of the bell-cavity. There are 4 minute clusters of gastric cirri, one in each interradial corner of the stomach. These

Synopsis of the Species of Carybdea.*								
	$\begin{aligned} & \text { C. marsu- } \\ & \text { pialis. } \end{aligned}$	$\begin{aligned} & \text { C. rastonii }= \\ & \text { a varaiey of } \\ & \text { C. marsuu- } \\ & \text { pialis (?) } \end{aligned}$	$\begin{aligned} & \text { C. xaymaca- } \\ & \text { na a a variety } \\ & \text { of C. marsu- } \\ & \text { pialis. } \end{aligned}$		C. alata.	$\begin{aligned} & \text { C. prramis= } \\ & \text { a variety of } \\ & \text { C. alata. } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { C. grandis }= \\ \text { a variety of } \\ \text { C. alata. } \end{array}$	
Size of bell in mm.	$\begin{aligned} & \text { 4-sided, } \\ & \text { prismatic. } \\ & 40 \text { high, } \\ & 30 \text { wide. } \end{aligned}$	4 -sided, prismatic 35 high, 30 wide.	Truncated pyramid above; pris23 high, 15 wide			Truncated pyramid. 30 high, 20 wide	Truncated pyramid. 230 high, T40 wide. Thick walls.	
Form and size of pedalia in terms of height of bell.		Small,scalpel shaped. One fourth long, one-fifth to one-sil wide.	Scalpel-shapthan in C. rastonii. One third to onehalflong, one fourth to one third wide.	As in C.ras- tonitid one toind liong one-sish wide.	$\begin{aligned} & \text { Spatula- } \\ & \text { shaped. } \\ & \text { sne-half } \\ & \text { long, one- } \\ & \text { firth wide. } \end{aligned}$	Very long, narrow, scythe- shaped. r long, one-eighth wide.	Wide, flat, spatula- One-sixth long, one- ninth wide	Wide, flat as in C. Onrandis. long, one- fifth wide.
Length of flexible ten- tacles in terms of height of bell	12	r.5+	$8=$	$2 \pm$		I+	0.75 to 1	to 1.5
Number of sense-club.	Six. ${ }^{2}$ median; 4 lateral	6	6	6	6	6	I to 3 I median; 2 lateral	$\left[\begin{array}{l} 4 \\ \begin{array}{l} 4 \\ 2 \\ 2 \\ 2 \text { matediaral. } \end{array} \end{array}\right.$
Form and number of velar canals in each oc- tant of velar- ium. ing		$\begin{aligned} & 2 \text { branched } \\ & \text { but not anas- } \\ & \text { tomosing. } \end{aligned}$	$2 \text { as in } C .$ rastonii.	$\left\|\begin{array}{l} 6 \text { profusely } \\ \text { branched, } \\ \text { but not anas- } \\ \text { tomosing. } \end{array}\right\|$	$\left\|\begin{array}{\|l\|} 3 \text { branched } \\ \text { complesly, } \\ \text { butnot anas } \\ \text { bumosing. } \end{array}\right\|$	3 unbranched, or only branched. Non-anastomosing.	$\begin{array}{\|l} 3 \text { branched, } \\ \text { but not anas } \\ \text { tomosing. } \end{array}$	
$\begin{aligned} & \text { Sizz and } \\ & \text { shape of } \\ & \text { stomach. } \end{aligned}$	Base wide, throat-tube slender small.	Wide, flat, as long as bell-cavity	Wide, flat, lanceolate lips.	Wide, flat, with 4 short lips.	Short with simple lips.		$\begin{array}{\|l\|} \hline \text { Small, with } \\ \text { s simple } \\ \text { lips. } \end{array}$	$\left\lvert\, \begin{gathered} \text { As in C } \\ \text { grandis. } \end{gathered}\right.$
Where found	Mediterranean.	Tropical Pacific.	West Indies, tropical Atlantic	Coast of SierraLenene, West Africa. Depth of Depth of 200 fathoms	$\begin{aligned} & \text { Tropical } \\ & \text { Pacific } \end{aligned}$	Tropical Atlantic.	${ }^{\text {Tropical }}$ Pacific.	Tropical Pacific.

- cirri are brush-like, and in each cluster about 8 to 10 primary branches arise, and each gives off 2 to 3 lateral branches, each of which terminates in a brush of to to 13 flaments. There are thus 100 to 150 of these terminal filaments in each interradial cluster of gastric cirri. The gonads are 8 eadike expansions on both sides of the 4 interradial sep

$$
\begin{aligned}
& \text { 1ot quite to the velar margin or to the interradial edges of the stomach. } \\
& \text { Bell and pedalia dull milkv-ocher. due to the color of the exumbrella }
\end{aligned}
$$

lexible parts of tentacles dull pink. Ocelli very dark brown, nearly black; basal branches of gastric cirri dull horny-brown. Oceli very dark brown, neally black, basal branches

The medusa is common in the Mediterranean, but its development remains unknown. Claus, 1878 , gives a detailed account of its anatomy and histology. When young it apparently remains in deep water probably at or near the bottom, but when mature it swims upward to the surface.

Carybdea rastonii Haacke

 Ikidd, p. 439 .
Bell nearly cubical, with fatly rounded top and nearly plane vertical sides. 35 mm . high, 25 to 30 mm . wide. Pedalia small, only one-third to one-fourth as long as bell-height, and
three-fifths as wide as long. Flexible lashes of tentacles r. 5 times as long as bell-height. sense-clubs in niches 5 mm . above velarium. Each club with 2 large median and 4 small lateral eyes, and an entodermal lithocyst. Velarium wide with 4 perradial, subumbrell frenulæ and 16 short, branched, noin-anastomosing velar canals, 4 in each quadrant. Manu brium flat, wide, less than half as long as depth of bell-cavity. 4 simple lips. 4 very small interradial 8 leaf-shaped gonads along entire sides of the interradial

號 dull pink. It swims toward a light at night

Gulf of St. Vincent, South Australia; Honolulu Harbor, Hawaiian Islands; Subig Bay and Nasugbu, Luzon, and Mausalay, Mindoro, Philippine Islands, in January. Common on surface. Probably widely distributed over the tropical Pacific.
The medusa begins to develop its gonads when the bell is only ir mm. high and they are large in medusa 15 mm . high.

The youngest medusx found by Haacke had a pyramidal bell and an axial-canal above the stomach-cavity as if it might have been attached at one time to a scyphostoma nurse
Each sense-club had but 2 eves, the median ones; and the I6 velar canals were simple and Each sense-club harborifera Maass, I807, from Honolulu, is clearly the young of this species. This small medusa may be distinguished by its cubical bell and small pedalia. It i closely related to the Mediterranean C. marsupialis.

The following are the dimensions (in millimeters) of a specimen obtained by the U. S Bureau of Fisheries steamer Albatross in Subig Bay, Luzon, Philippine Islands, on the surface,
January 6 , rgo8. Height of bell, 34 ; width of bell, 20; length of pedalium, II; width of pedalium, 6.5 ; sense-clubs, 6 above the velar margin; flexible shafts of tentacles, contracted 30 long. In this specimen the bell was unusualiy narrow.

Carybdea xaymacana Conant.

Plate 56, figs 5 to 77 ,
Charybdea xaymacana, Covsavr, 1897, Johns Hopkins Univ. Circl., No. T32, p. 8, fig. 8; 1898, Mem. Biol. Lab. Johns Hopkin

Beil 18 to 23 mm . high, 15 mm . broad. Sides vertical for two-thirds their height, above which they slope slightly inward. A slight concavity at top of bell. Pedalia flat and scalpel times as long as the bell-height. The 4 sensory-clubs are situated each within a niche about one-seventh or one-eighth the distance from bell-margin to ápex. Each club contains an ento dermal, crystalline concretion and 6 ectodermal eyes; 2 of these eyes are large and median 4 are small and lateral. These eyes are all on the centripetal side of the club, so as to look inward into the bell-cavity. The median eyes are each provided with a prominent lens, whereas the lateral eyes have no lenses. Velarium about one-seventh as broad as bell-diame ter. I6 velar canals, 4 in each quadrant; these canals are forked at their ends, at times with more than 2 branches. Stomach flat and shallow. The throat-tube, which is well developed with 4 large oral lobes, hangs down into bell-cavity a distance between one-third and half The 4 tufts of oastric cirri are epaulet-shaped and of small size. Each tuft arises from stalk-like base which projects from the subumbrella floor of the stomach. There are 8 leaf like gonads.
 apex of the exumbrella and bluish-purple tentacles.
This species was found by Conant in Kingston Harbor, Jamaica. I have obtained it in Nassau Harbor, New Providence Island, Bahamas, in spring and summer.

Good figures of the mature medusa are given by Conant, 1897-98.
Berger, 1900, finds that strong light, or darkness, inhibits the pulsation of this medusa A sudden change in the intensity of the light acts as a stimulus. Removal of all 4 sense
clubs causes a short temporary "paralysis," but pulsation is soon resumed. Severance of the marginal nerve-ring in 8 places, so as to isolate the sense-organs from the tentacles, doe not interfere with pulsation. The operation, however, causes the pedalia to bend inwardly by contraction. When the pedalia are cut off the medusa swims unnaturally, being unable to steer itself and turning in circles and somersaults. Removal of the perradial and inter radial marginal ganglia produces paralysis of the pulsations.
When young the exumbrella of this medusa is ratal

When young the exumbrella of this medusa is regularly besprinkled with brown-colored and the pedalia are merely short, flattened, swollen basal bulbs of the pyriform, thin-walled, velarium has no velar canals and there are no gastric cirri. The young medusa is abundant in Nassau Harbor, Bahamas, during the summer.

Carybdea aurifera Mayer.

Charybdea aurifera (young medusa), Marxr, 1900, Bull. Mus. Comp. Zool. at Harrad Collese, vol 37 P.70, plate 25 , figs. $8 \mathrm{8}-83$
A young medusa was described from the Tortugas, Florida, in 1goo, but in 1909 a much larger but yet immature specimen was found. In this large specimen the bell is 7 mm . Iong, 5 mm . wide at the velar margin, thin walled, and tapering to a blunt apex. The exumbrella

canals; the 8 adjacent to the frenulx are narrow and simple, but the 8 adjacent to the tentacles are wide and each gives off 3 or 4 finger-like processes. The manubrium is wide 4 -sided and nearly half as long as the height of the bell, with 4 simple lips. There are about Ioo simple, tapering, unbranched gastric cirri. The most characteristic feature of this species is its uniform rich rosin or golden-brown color. It is a rare form and has been taken only twice in ten years in surface tows, in July, at Tortugas, Florida

Carybdea alata Reynaud

 See synoptic table of species of Carybdea.
Bell 55 mm . high, pyramidal, with a rounded apex and rounded angles. Bell 42 mm . wide at margin and 17 mm . wide at base of rounded apex. The 4 pedalia are each 27 mm . long and 12 mm . wide at widest part. The rhopalia are 13 mm . above bell-margin. When the bell is 55 mm . high there are 6 wide dichotomously forked velar canals in each quadrant between successive pairs of tentacles. In medusæ having a bell 60 mm . high, the forking of
these canals becomes more complex and quite these canals becomes more complex and quite irregular, no two quadrants being alike. Thus
it is probable that C. pyramis from the West Indies, C. obeliscus from the Cape Verde Islands it is probabina from the Philippine Islands, and C. grandis from the Paumotos Islands are only varieties or developmental phases of C. alata, the oldest species.

Carybdea alata var. pyramis Haeckel.

I830, Lesson's Centurie Zoologique, p. 95, planche 33 , fig. x.
Bell about 30 mm . high and 20 mm . broad. A 4 -sided truncated pyramid, the upper part being about one-third and the lower two-thirds as wide as the bell-heigh. A interradial furrow bordered by a pair of prominent ridges extends down the 4 sides as the exumbrella. The very long, narrow pedalia are lancet-shaped and and in deep niches on the bell-height. Tell. Bell-margin displays 8 shallow lappets, the clefts being occupied by the 4 frenulx and the 4 pedalia. The 4 frenulx which support the wide velarium are 3 -cornered and thick. 24 simple, 3 -cornered velar canals, 6 in each quadrant. The stomach is not quite as wide as the bell-radius, and is shallow and quadratic. Neck large; 4 -sided, pyramidal, and separated from the stomach by a deep stricture.
4 large, 3 -cornered lips with folded edges. Gonads 8
wide leaves with irregular, crenulated, free margins. This in the Atlantic.

Carybdea alata var. grandis Agassiz and Mayer

 Charybdea grandis, Agassiz, A. and MAxIr, 1902, Mem. Museum Comp. (?) Charybdea grandis, Bzowsx, Ioco, Report Pearl Oyster Fisteries, Gulf of

 II, p. 4.
This medusa may be identical with Lesson's Bursarius cytheree but the latter is so vaguely described and figured that I feel obliged to omit it from serious conderation.

Adult medusa.-Bell high, pyramidal, with blunt apex. 230 mm . high, and 440 mm . wide. Gelatinous substance quite thick and of remarkably tough consistency. There are 4 interradial, wing-like pedalia, the broad sides of which extend outward in a radial direction. These pedalia are each about 40 mm . long, and 25 mm . Fr. $329 .-$ Carybldea alata, var. grandis. Young
medusa, after Agassiz and Mayer, in
Memese pedalia are each about 40 mm . long, and. 25 mm .
Colilege. Fr. $329 .-$ Carybldea alata, var. grandis. Young
medusa, after Agassiz and Mayer, in
Memese pedalia are each about 40 mm . long, and. 25 mm .
Colilege. which arises from distal end of pedalium. The flexible part of the tentacle is about 140 mm . long and its surface is ringed with transverse rows of nematocyst-cells. Each of tial sense-organs arises from a deep niche about 27 mm . above level of velarium.
The sense-organ is knob-shaped, mounted upon a short stem, and contains from I to 3 The sense-organ is knob-shaped, mounted upormal ocelli and an entodermal concretion. In old medusx there is usually a single, median ocellus in each sense-organ, but a young specimen 30 mm . in height had a large median and 2 small lateral ocelli. These ocelli are all directed as if to perceive objects within the bell-cavity. Velarium well developed and suspended by 4 mesenteries or frenulx in the radii of the sense-organs. 24 short, tree-like, non-anastomosing velar canals extend centripetally inward into the substance of the velarium. Manubrium short, 4 slightly recurved lips. There are 4 interradial crescentic areas of numerous short, gastric cirri, the horns of each crescent pointing centripetally. 4 wide perradial pouches, extending outwardly from he stomach, are separed lateral canals leading into the lumen of the
pedalia. The gonads consist of 8 leaf-like folds attached to the sides of the interradial septa and hanging free in the radial pockets

Gelatinous substance of bell is hyaline; entoderm translucent and milky-white; gastric cirri and flexible parts of tentacles pink or yellow-pink; sensory knobs of rhopalia dull ocher in color; ocelli deep brown, almost black.

Found at Fakarava and at Anaa Islands, Paumotos Islands, South Pacific by the Albatross in October, 1899. A large swarm upon the surface at Anaa Island.

This medusa may be identical with the vaguely described Bursarius cytherea Lesson, from New Guinea, or with Tamoya bursaria briefly mentioned by Maas, from the Malay Archipelago. Bigelow, rgog, believes that C. moseri is only the young of this medusa.

Carybdea alata var. moseri Mayer.

This common Hawaiian Island medusa may be only a small variety, or a young stage, of Carybdea grandis. (See table of synopsis of the species of Carybdea.) It is probably identical with a medusa briefly mentioned and inadequately figured by Semper, from the Bell 80 mm . hig
Bial
Bell 80 mm . high, 47 mm . wide, dome-shaped, with flat top and thin, uniform walls. Each sense-club has 2 large median and 2 small lateral eyes. The sensory niches are long, trans25 mm . long, 17 mm . wide, 24 simple, unbranched, velar canals. Tentacles ringed, tapering throughout their length, hollow, and about I .5 times as long as bell-height. Gonads not quite as long as the septa on which they are developed. Stomach small, flat, 4 simple lips, gastric cirri simple and unbranched. Honolulu, Hawaiian Islands

Carybdea murrayana Haeckel.

Bell 50 mm . wide, 60 mm . high, quadratic below, with flatly dome-like top. Pedalia narrow, tapering, \#attened laterally, one-third as long as bell-height. Each sense-club has 2 large median and 4 small lateral eyes, as in C. marsupialis. Velarium wide, with 48 profusely branching, non-anastomosing canals. The 4 clusters of gastric cirri in the interradial corners of stomach are profusely branched, as in C. marsupialis.

Distinguished from C. marsupialis by its large number of 200 fathoms.

Genus TAMOYA F. Mïller, 1859

 The type species is T. haplonema F. Müller of the Atlantic coasts of North and Sout America, south of Cape Cod.

generic characters.

Charybdeidx with 4 simple, interradial tentacles provided with pedalia. Stomach wide and deep; its 4 perradial sides flattened so as to present the superficial appearance of mesen teries binding the 4 -sided œesophagus to the subumbrella. There are 4 vertical, interradial,

- The so-called mesenteries of Haeckel are merely the flattened, perradial sides of the cruciform stomach.

Haeckel's Tamoya bursaria and \mathcal{T}^{\prime}, gargantua are too imperfectly known to be retained in scientific literature.

This genus is very closely related to, if not identical with, Carybdea, being distinguished only by its large stomach with its perradial mesenteries and its vertical clusters of gastric cirri between them are merely of an intergrading character.

Tamoya haplonema F. Müller.

Plate 57 , figs. 2 to $2^{\prime \prime \prime}$.

Bell 90 mm . high, 55 mm . wide, with vertical sides, and relatively flat top. Exumbrella surface thickly covered with white, wart-like clusters of nematocysts. 4 pedalia, 30 mm long, flat, spatula-shaped, and sharp-edged. Tentacles 90 mm . long, hollow, very flexible and bearing regury the inner side of the bulb. The large eyes are provided with prominent convex lenses and are ectodermal. There is a large terminal mass of concretions of entodermal origin.

The velarium is well developed and there are io dendritic velar canals in each quadrant, which terminate in numerous, non-anastomosing branches. The nerve-ring running from the base of each pedalium to the sensory-clubs is distinctly visible as a white-colored cord The stomach extends about a third of the distance from inner apex to level of velarium, and there are 4 slightly recurved lips. Gastric cirri short and numerous.

The 8 genital organs are curtain-like sheets with frilled edges, which project from the interradial septa into the perradial gastrovascular pouches of bell on either side. In old their free edges overlap beyond the central line of each

Gelatinous substance of bell transparent. The long, flexible tentacles are milky-yellow often with a faint purple hue. There are large, white, wart-like clusters of nematocysts over the pedalia and velarium. The genital organs are milky-yellow, the eyes dark brown.

This medusa is exceedingly active, the gelatinous substance of its bell is tough and rigid.
Tamoya haplonema is widely distributed, having been found on the coast of Brazil, in the West Indies, at Beaufort in North Carolina; and in Great Peconic Bay, and Branford Harbor, Long Island Sound, New York, in the autumn. Our figures were obtained from a specimen captured at the last-named place early in September, 1902. None was found upon depths of a fathom or more.
Haeckel's Tamoya prismatica from the West Indies is apparently identical with \mathcal{T}. haplonema. It is described as follows:

Bell 80 mm . high, 40 mm . broad, pyramidal, and 4 -sided. The pedalia are longer and narrower than in T. haplonema. They are wedge-shaped, and 3 times as long as broad, and about half as long as bell-height. In their upper parts they are 3 -sided, but below they are 2 -sided with small meridional wings. Velarium very wide, with numerous, narrow, branching canals. Stomach large, occupying upper third of bell-cavity. Throat-tube about as large as stomach, 4 prominent lips. Color (?) Marginal sense-organs (?)

This form is found in the West Indies. It is probably only a variety of \mathcal{T}. haplonema.

Genus TRIPEDALIA Conant, 1897

Tripedalia, Conant, 8897, Johns Hopkins Univ. Circulars, No. 132, p. 9; 1898, Mem. Johns Hopkins Univ. Biol. Lab., vol. 4,
The type species is T. cystophora, described by Conant from Kingston Harbor, Jamaica.
generic characters.
Carybdeidx with 4 interradial groups of tentacular pedalia, each tentacle being mounted upon a separate, unbranched pedalium which arises from the bell-margin. Velarium with canals and with 4 perradial frenulx. No hernia-like sacs project into the bell-cavity from the main stomach-pouches of umbrella.

This genus is very closely related to Chiropsalmus, but the pedalia themselyes do not branch, but each pedalium of each cluster arises separately from the interradial corner of the
bell-margin. In Chiropsalmus, on the other hand, each of the 4 pedalia gives rise to side branches which bear tentacles. Moreover, in Tripedalia there are no subumbrella, hernialike, gastric diverticula as in Chiropsalmus.

Tripedalia cystophora Conant

Bell cubical, with edges slightly rounded; 12 mm . high, and of about 15 mm . wide. There are 4 interradial groups of pedalia, each group consisting of 3 distinct, separate pedalia, each one of which arises from the bell-margin and gives rise to a single tentacle. The pedalia,
 are about half as long as the bell-height. The I2 entacles are each about 2.5 times as long as the pedalia. 4 sense-clubs are situated in niches at about one-fifth or one-fourth the height of bell above margin. Each sense-club has 2 large, median and 4 small, lateral eyes and a terminal lithocyst. The median one-sixth as broad as bell-diameter. There are 24 simple, unforked velar canals, 6 in each quadrant. These velar canals are triangular in outline, and the 8 adjacent to the 4 frenulæ are only half as wide as the others. Stomach wide and shallow, but the throattube is long and extends downward in some cases to bell-margin; cruciform in cross-section, with 4 welldeveloped, oral lobes in the radii of the sense-organs. There are 15 to 21 organs, resembling lithocysts, in
the gelatinous walls of the manubrium; each conthe gelatinous walls of the manubrium; each con-
sists of a round or oval sac lined with ciliated cells which keep in motion and bear up an irregular, which keep in motion and bear up an irregular, Fr. $330 .-$ Tripedalia cyssophora. coarsely granulated concretion. These organs are
are The small, tapering, gastric cirri are brush-shaped and spring from 4 short stalks in the interradial corners of the stomach. There are 4 wide, perradially situated, gastrovascular pouches in the umbrella, which are separated by 4 interradial septa; but these septa are incomplete in the regions of the pedalia, and thus the 4 stomach-pouches are placed in communication one with another, as in other Charybdeidx. The gonads are 8 leaf-like sheets stomach-pouches. The medusa is light yellowish-brown, the gonads being of the same color.

$$
\begin{aligned}
& \text { Figure } 330 \text { shows a mature female, } 4 \text { times natural size, drawn from nature, by the author. }
\end{aligned}
$$ Figure 330 shows a mature female, 4 times natural size, drawn from nature, by the author. In order to illustrate their shape, the lips are shown twisted 45° from their natural position.

This species is found in Kingston Harbor, Jamaica, in great abundance during the summer among the mangrove roots of the islands in a shallow, muddy lagoon on the western side of the harbor, north of Port Henderson. It disappears in winter

The dimensions of the mature specimen here figured are as follows: Bell 12 high, 15 mm . wide. Pedalia 5 mm . long, 2.1 mm . wide. Rhopalia 2.25 mm . above velarium margin. Stomach 5.5 mm . wide, 7 mm . long. The gonads were mature and the gastrovascular space with swimming plap 7 . This medusa was captured on way 24,1909,
ches. The embryos were thrown out into the water as free-swimming plastrovascular pouches. The embryos were thrown out into the water as free-swimming planulx, which into small Scyphostomæ with mouth and typically with 4 tentacles and 4 tæniolæ, although 3 and 5 tentacled specimens were not uncommon. In this condition they lived for 3 weeks without essential change. I find that many, but not all of the planulæ, are besprinkled with dark brown pigment-spots which are scattered over the ectoderm of the narrow posterior end of the larva.

Genus CHuropsalmus L. Agassiz, 1862.

 generic characters
With 4 interradial, branched pedalia which give rise to a number of tentacles. 4 wide perradially situated stomach-pockets in the subumbrella, and each of these gives rise to
finger-shaped, unbranched, hernia-like pouches which project into the bell-cavity. Wide, marginal pouches and numerous canals in the velarium. 8 leaf-shaped gonads.

The type species of this genus is Chiropsalmus quadrumanus, described as Tamoya Atlantic coasts of North and South America south of Cape Hatteras.

Chiropsalmus quadrumanus L. Agassiz.
Plate 57 , fig. 3.

Bell dome-shaped, about 140 mm . wide and 100 mm . high. 4 large, hand-shaped pedalia, the 7 to 9 finger-like branches of which give rise each to a single, long, slender tentacle. 7 to 9 tentacles thus arise from each pedalium. These tentacles are hollow and flexible, and are covered with numerous, closely set rings of nematocysts. A large axial-canal extends ituated within 4 covered niches upon sides of bell at about one-sixth the distance from margin o apex. There are 6 ectodermal eyes upon the sense-club, 2 large median and 4 small lateral. Velarium very wide with 16 large branched pouches which extend into it from the 4 main, astrovascular spaces of the bell. The I6 velar pouches give rise in turn to numerous small, branching canals which ramify through the velarium. Stomach wide and globular, the mouth urrounded by 4 large, triangular lips. 4 wide, perradial pouches extend from stomach into wall of bell; each of these pouches gives rise to 2 finger-shaped, hollow, hernia-like sacs which project from the subumbrella side into the cavity of the bell; 'these 8 sacs are situated tery near base of stomach. There are 4 interradial, crooked, crescent-shaped rows of gastric irri on inner walls of stomach

This species was found by Müller at Desterro, Santa Catharina; Brazil, and later it was
The sea-bottom, about a mile off shore, though sometimes found within the harbor itself.

Chiropsalmus buitenaijki Horst

Chiropsalmus buitendijki, Horss, 1907, Notes from the Leyden Museum, vol. 29, No. 2, p. ror, plate 2, figs. 1-6.
This species from the harbor of Batavia, Java, is distinguished by its 8 long, simple, inger-shaped, subumbrella pocket-arms nearly as long as the depth of the bell-cavity, so that hey almost touch the velarium. The pedalia also have 5 or 6 lateral branches arranged, judging from Horst's figure, in a linear series on the outer side of the main shaft, the largest branch being nearest the bell. In other species of Chiropsalmus the side branches of the pedalia are irregularly arranged.

In other respects the Javanese medusa resembles the other species of Chiropsalmus. Bell cubical, 65 to 70 mm . high and wide, with a slightly arched apex. Main shafts of pedalia ateral branches all arise from the abaxial side of the pedalium and form a decreasing series, he smallest being outermost. The rhopalia are in niches about one-fifth the distance between velarium and bell-apex. Each club has 2 large median and 4 small lateral eyes. The velarium is wide, has 4 frenulx, and 16 dendritically branched velar canals. Bell transparent, flexible parts of tentacles of a rosy hue. In its simple finger-shaped processes of the subumbrella floor of the bell this species resembles the American Chiropsalmus quadrumanus to which it is losely related

Chiropsalmus quadrigaus, Hasckers, 1880, Syst. deer Medusen, P. 447.

The following description is based upon a study of six specimens obtained in a seine
 by the U. S. Bureau of Fisheries steame Aloands from January to June, roo8. Bell dome-like and 4-sided, with to 100 mm . high, 80 to 100 mm . wide at level of velarium. There are 4 hand-shaped, interradial pedalia, laterally flattened, which arise from the sides of the bell at a short disThese pedalia are about 30 mm . long and II mm. wide, and each bears 5 to 9 finger-shaped terminal projections which give rise to an equal number of long, flexible, hollow tentacles. These tentacles are thickly but somewhat irregularly ringed with nematocysts. They vary in length, but the longest when The pedalia of a medusa 100 mm . wide were each 47 mm . long and $2 I \mathrm{~mm}$.'wide.
The 4 perradial sense-clubs are set within covered niches in the sides of the bell about 14 mm . above the velar margin. Each sense-club contains an entodermal, terminal, abaxial mass of concretions and on its Fic. 33 r.-Chiropsalmus quadri gatus Haeckel, side view of half-grown inner side are 6 eye-spots. The 2 specimen collected by the Dil Drawn boss. the author, from a preserved
A.
 convex lens, but the 4 smaller, lateral eyes are merely pigmented ocelli. The eyes are arranged so as to view objects withinthe bell-cavity.
The velarium is 13 mm . wide and supported by 4 bracket-like perradial frenule. There are about 50 dendritic, non-anastomosing velar canals, 12 to 15 in each quadrant. The velarium is diaphragm-like and does not hang downward beyond the velar margin but stretches flatly across tending to close the opening of the bell-cavity.
The wide central stomach is only about. 20 mm . long and there are 4 lanceolate lips with entire, simple margins. The 4 perradial sides of the cruciform stomach are much flattened
and form the so-called "mesenteries" of Haeckel, bridging across, bracket-like, between the subumbrella and the 4 -sided œesophagus. 4 pairs of gastric saccules arise from the perradial sides of the stomach and project downward into the bell-cavity (c. fig. 33I). Each saccule is laterally flattened, cock's-comb-shaped, with an irregularly notched margin, and is about 20 mm . long and II mm. wide. A solid, gelatinous projection extends downward so as to fill the greater part of the cavity of each gastric saccule.
There are 4 long, interradial bands of gastric cirri marking the borders of the central stomach. These cirri are fusiform, simple, sharp-pointed, and unbranched and arise in 4 or 5 rows. Each cirrus is about 3 mm . long.

The peripheral, gastrovascular system consists in the usual 4 wide, perradial stomachpouches, separated by 4 narrow, interradial septa, which are interrupted at the point of origi of each pedalium where a canal extends downward from the adjacent stomach-pouches and branches in finger-like ramuli leading into the tentacles of the pedalium. The 8 oren and velar canals have already been described. The 8 leaf-like gonads are resemble chose and project into the wide, perradial stomach-pouches.

The bell is milky-yellow in formation and there are traces of a dull purple-pink coloration in the tentacles. The ocelli are dark brown.

I am informed that this medusa is abundant in Subig Bay, Luzon, Philippine Islands, where it is captured in seines. The natives are said to preserve it in vinegar, and when so prepared it is sold in the markets for food.

In the young medusa having a bell 18 mm . high and 20 mm . wide, there are only 4 or 5 tentacles on each pedalium and the subumbrella saccules have not begun to develop, nor is there any visible trace of the gonads. The abaxial finger of each pedalium is longest, and the 3 others are evidently of more recent development, are very short, and lie nearer the vela margin. The longest (abace velarium are begining to develop and there are about 7 irregularly but simply branched velar canals in each quad each quadrant.
Haeckel,

Haeckel, 1880 , describes a somewhat larger young specimen from Rangoon, Indian I ame medusa is common among the Philippine Islands.
am told that this medusa grows to be about 150 mm . in diameter, although the larges specimen in the Albatross collection is only 100 mm . wide, but appears to be mature. It found swimming in shallow water near the shore. It is very closely allied to the Atlantic C. quadrumanus, but may be distinguished by its laterally flattened cock's-comb-shape gastric saccules, those of C. quadrumanus being finger-shaped.

Ciropsalmus quadrigatus obtained by the Albatross in 1908 in the Philippine Islands

Locality.	Date.	Height of bell in mm.	Width of bell in mm .	Number of tentacies upon each pedalium.	Remarks.
Cataingan Bay, Masbate, near shore.	April 18	49	55	6, 6, 7, 7	Immature. The 8 gastric saccules only beginning to appear.
Do.	April 18	5^{1}	5^{1}	8, 6, 7, 5	Do.
Do.	April 18	40	20	6, 5, 6, 6	Do.
Subig Bay, Luzon. Caught in a seine.	January 7	18	20	4, 4, 4, 4	No gastric saccules and no gonads.
	January 7	70	80	9, 5, 8, 8	With well-developed but immature gonads. With large cock's-comb-shaped gastric saccules.
Mausalay, Mindanao.	June 4	97	100	8, 8, 8, 8	Apparently mature.

Chiropalmus zygonema, Hascreve, 1880 Chyst der Medisen, p 641
Bell 4 -sided, pyramidal with a truncated apex, 60 mm . high and 40 mm . wide, including height of velarium. The 4 pedalia are leaf-shaped, each with only 2 short, asymmetrical, fore, there are but 8 tentacles. Stomach round and sac-like, œsophasus small with 4 lappets, though only half as long as stomach. 4 interradial bow-like areas of gastric cirri in stomach wall. The stomach gives rise to 4 perradially situated pouches, on both sides of the entrance to each of these pouches near the stomach are 2 very small, oval pouch-arms- 8 in all.

This species is found off the Argentine coast, South America. It differs from all othe species of Chiropsalmus in its simple, 2 -pronged pedalia, and in the very small finger-lik pouches of the stomach. The velarium and gonads are similar to those of C. quadrumanus.

Chirodropus, Hacckri, r880, Syst. der Medusen, p. 447 .
The type species is Chirodropus gorilla Haeckel, of the Atlantic coast of equatorial Africa.

generic characters.
Carybdeidx with 8 branched, or feathered, sac-like projections which extend from the 4 perradial stomachpouches into the bell-cavity. The free margins of the ponads ${ }^{\text {pedalia. }}$

This genus resembles Chiropsalmus, but is distin guished by its branched hernia-like pouches in the bell
cavity, whereas in Chiropsalmus these projections and cavity, whereas in Chiropsalmus, these projections are gins of the gonads are simple and entire, whereas in Chirodropus they are broken up into grape-like clusters of swellings.

Chirodropus gorilla Haeckel.

Chirodropus gorilla, Hazcriz, $\mathrm{I880}$, Syst. der Medusen, P. 448, taf. 26,
Bell dome-shaped, evenly rounded above and in cluding the velarium, which hangs downward, 150 mm high and, 120 wide. Sides rounded; the sculptured deidx are very poorly developed.

> dx are very poorly developed The 4 interradial pedalia
rical and hardly one-fourth as long as bell-height. Each pedalium gives rise to 9 long, narrow, tapering gelatinous finger-like processes, each bearing a long, flexible tapering tentacle longer than bell-height. Thus there are 36 tentacles in all.
The 4 perradial sensory niches are deep and heartshaped. They are set in the sides of the bell at a somewhat higher level than the pedalia and are about 60 mm .
above velar margin. The sense-club is mounted upon a slender stalk. Number of eyes (?)

Below the marginal nerve-ring are 16 gelatinou lappets which form an integral part of the wide velarium which projects downward. The I6 lappets are cleft in
the 4 interiadii and in the 8 adradii, and are divided by the 4 perradial frenulx. The 8 lappets flanking the 4 frenulæ are about 1.5 times as long as the 8 which flank the 4 interradial pedalia. These lappets contain diverticula of the perradial stomach-pouches and each lappet-pouch gives rise to about 6 dendritically branched velar canals, which only occasionally a a nastomose and which extend outward nearly to margin of velarium, running mainly parallel one to another.

Each perradial stomach-pouch gives rise to a pair of elongate, tapering, hollow processes, which project downward into the bell-cavity and bear numerous finger-like side processes, more complex than the simple finger-shaped ones of Cess. These processes are thus much and urn-shaped, 4 -sided, bound to subumbrella by 4 perradial mesenteries. There are 8 dendritic, digestive glands, a pair on either side of each perradial corner of stomach-cavity.

The 4 pairs of gonads are attached to the subumbrella sides of the 4 interradial septa, as in other Carybdeidæ. Their free outer margins bear grape-like clusters of swellings. The only specimen studied by Haeckel was a male, found at Chenchozo Loango, Lower Guinea, about $5^{\circ} \mathrm{S}$. lat. West coast of

Chirodropus palmatus Haeckel.

Chirodropus palmatus, Harcrxr, 1880,-Syst. der Medusen, p. 448.
This is possibly only the young of a variety of C. gorilla being smaller, and only 70 mm . wide and 100 mm . high, including the suspended velarium. The 2 pouch-arms which project into the bell-cavity from each perradial stomach-pouch are fused together in their upper two-thirds, leaving only their lower thirds free. They bear numerous filame
C. gorilla. Finally, each pedalium bears 21 fingers instead of 9 , as in C. gorilla.
C. Aorilingle specimen is described by Haeckel from preserved material found near St. Helena off the west coast of Africa.

We can not be sure that this form is distinct from C. gorilla until we know the normal imits of variability of the latter species, and it seems probable that there is but a single species limits of variability or the

Order STAUROMEDUSE.

 Hacckxi, 1880, syst. cer Medusen, p. 363.-Goertre, 8887 , Abhandl. zur Entwickelungggesch. der Thiere, Heft

Neglecting for the moment to consider the family Tesseranthinæ Haeckel, the Stauromedusx constitute a unitary group of sessile Scyphomedusæ which are attached to objects by means of an adhesive pad at the extremity of the aboral stalk of the bell. The bell-margin knobbed tentacles; although in Capria we find that these tentacles are not knobbed, and the genus Stenoscyphus there are no marginal lobes, while in Lipkea there are no tentacles and the lobes are perradial and interradial, not adradial

In the 8 perradial and interradial notches between the marginal lobes we may find a knobbed tentacle, which may be metamorphosed into an adhesive organ serving as a sort of anchor. In the genera Lucernaria, Kishinouyea, Craterlophus, Capria, and Lipkea, however, these anchors are not found. The central stomach gives rise typically to 4 perradial pouches which are partially separated one from another by 4 interradial septa, but these pouches communicate one with another at the margin, thus forming a peripheral ring-sinus. The arms, or marginal lobes, are hollow, as are also their knobbed tentacles. There are 4 interradial the center, thus inclosing 4 separate perradial cavities in the stalk as in Haliclystus. The gonads, which are developed in the entoderm of the subumbrella, are typically interradial and more or less horse-shoe-shaped with the free ends of the horse-shoe directed outward; but ften the horse-shoe is cleft in the middle, giving 8 adradial, crescentic gonads. There is a marginal ring-muscle in the subumbrella which may be entire or divided into 8 separate perradial and interradial sectors. Centripetal to this ring-muscle system are the radial muscles. The talk also has a system of 4 interradial, longitudinal muscles. As in scyphostoma larve the 4 interradial septa of Stauromedusæ are not simple, solid-walled partitions, but each contains a unnel-like pit, livid with ectoderm, which dips downward from the subumbrella thus hollowing even to the aboral end of the stalk itself.
Clark, 1863 , and after him Gross, Igoo, have made careful studies of the internal anatomy of the sessile Stauromedusæ. They conclude that we may divide these forms into 2 families, the Eleutherocarpidæ with 4 simple, perradial stomach-pouches, and the Cleistocarpidæ in which the neighboring balves of the adjacent gonads unite at their distal ends in the radii of the corners of the mouth. Thus the gonads become united by a transverse, circumferential membrane, which divides each of the 4 perradial stomach-pouches into 2 spaces, an outer and an inner, the oral or inner one of which forms a cul de sac or.confined space which contains the gonads and opens at the axial end into the gastric cavity. The genera Halimocyathus, Craterlophus, and Depastrum are examples of the Cleistocarpidx, while Stenoscyphus, Kishinouyea,

Capria, Lipkea, Lucernaria and Haliclystus represent the more simply organized Eleutherocarpidæ. A clear understanding of these relations can best be obtained from a study of the figures by Gross, Igoo (Jena. Zeitsch. für Naturwissen., Bd. 33, p. 613, taf. 23, 24). Being As one would expect in sessile animals the Stauromedusx show ofiden thauromeduse. loss of marginal lobes or of tentacles; and in none of them do we find the lithocyst-bearing

Fro. $33^{2 a}$.-Median longitudinal perradial sections and crosss-sections of Stauromeduse. Somemhat diagrammatic, after Gross

sense-organs seen in all other orders of Scyphomedusæ. Eyes and "otocysts" are absent in the Stauromedus $æ$, and pulsation is not exhibited by the sessile forms.
There is reason to believe that the Stauromedusæ are the most degenerate of all Scyphomedusx and are to be regarded as sexually mature Scyphostomæ (see Kassianow, rgor Goette, 188). Their degeneracy is amply accounted for by their sessile mode of life; Hornell,
1883 (Natural Science, London, vol.
descended from some more highly organized forms of Scyphomedusx. Their chief reasons for this belief lie in the facts that in the Lucernaridæ the marginal anchors (colletocystophores) are highly variable and may therefore be vestigial organs. Moreover, in Lucernaria cam panulata the margin for . poeds ane nots the

Synopsis of the Genera of Stauromedusa.

view that the Stauromedusæ are degenerate, and, indeed, degeneracy would very probably result from their sessile condition.

The Tesseranthinæ, known only through the works of Haeckel, who alone has observed them, appear to be pelagic and are said to differ from other Stauromedusæ in having solid, tapering, non-knobbed tentacles, and in lacking marginal lobes. Their relationship to the by Haeckel from preserved material. It will be well to suspend judgment in respect to their structure, relationship, and development until more specimens have been studied.

The sessile Stauromedusa are creatures of cold seas. None is known from the tropics. They are littoral forms and attach themselves to Fucus, Zostera, and other seaweeds among the tidal eddies of the coast. They are generally rare and only locally abundant in any case. Owing to their rarity many of the species of Stauromedusæ are imperfectly described, and it is probable that some of them should be reduced. Kassianow, Igor, has studied the nervous system of Lucernaria, Haliclystus, and Craterlophus, and the results of his studies are here reviewed in the discussion of the genus Lucernaria, wherein I have also reviewed Kowalevsky, I884, upon the early stages of the developThe sessile Stau
The sessile Stauromedusx display no rhythmical pulsation in their bells, but no studies have been made to discover whether the larve at any stage possess this power. Hornell,
I 803 , and Browne, 1806 , have studied the of their studies are referred to in the description of this species.

According to A. Meyer, 1865 , the Lucernaridæ have great regenerative power. The bell may reproduce a new stalk and parts of the medusa may regenerate the whole (see genus Haliclystus). Kassianow, rgor (Zeit. für wissen. Zool., Bd. 69, p. 37I), reports upon soméwhat similar experiments upon Craterlophus.

The relationship which may exist between the Stauromedusæ and the Carybdeidæ is discussed in the introduction to this volume.

Genera TESSERA, TESSERANTHA, and TESSERARIA Haeckel, 1880.

Haeckel describes 4 specimens of these meduse from preserved material, and is the only naturalist who has seen them. They are said to differ from other Stauromedusæ in their solid non-knobbed tentacles, and in their being free-swimming, non-attached forms.
Haeckel states that these medus $æ$ have a simple, uncleft, umbrella margin, no marginal
chors, but 8 to 16 simple, perradial, interradial, and adradial tentacles. The broad mal anchors, but 8 to 16 simple, perradial, interradial, and adradial tentacles. The broad marginal
ring-muscle of the subumbrella is entire, not divided into 8 isolated sectors. Centripetal to the ring-muscle there is a system of radial-muscles. The medusæ are pelagic and have no stalk of attachment, although a hollow apical projection is found at the aboral pole of the bell. The tentacles are solid and do not terminate in nematocyst-knobs.

The stomach gives rise to 4 wide, perradial, gastric pouches which are possibly divided one from another in the 4 interradil by 4 short, narrow septa. These septa extend centrifugaliy from the 4 gonads, but are so short that they do not reach the bell-margin, and thus there is wide, marginal, gastral ring-sinus. There are 4 interradial, horse-shoe-shaped gonads with their free ends pointing outward. 4 simple lips and 4 interradial areas of gastric filaments in
the stomach. the stomach
Accordi
ccording to Haeckel these 3 genera are distinguished as follows:

Tesseraria, with 3^{2} tentacles. Bell ro mm . wide.
In all respects these medusx resemble one another so closely that I am lead to suspect that they may prove to be but stages in the growth of one and the same medusa. It will be observed that the larger medusx have the greater number of tentacles.

The following is a brief diagnosis of the characters of these medusæ,-according to Haeckel
Tessera princeps Haeckel, I 880 (Syst. der Medusen, p. 347 , taf. 2I, fign. I-6) is 5 mm high and 4 mm . wide with a pyriform bell and hollow a pex 347 , tafe are 4 perradial 5 mm about as long as the bell height, and 4 shorter (undeveloped?) interradial tentacles. There
are only 4 simple, interradial, gastric cirri, one in each interradius of the central stomach above (centripetal to) the 4 horse-shoe-shaped gonads. A single specimen was found by the Challenger southeast of Kerguelen Island, Antarctic Ocean, on February 19, 1874. .
Tessera typus Haeckel, 1880 (Ibid., p. 638), bell 8 mm . wide, 12 mm. high, pyramidal, 4 -sided, elongate. 8 tentacles, 4 perradial and 4 interradial, of equal lengths, each nearly twice as long as troximal half of subumbrella. A single specimen from the Indian Ocean, south of Madagascar. Tesserant Challenger Expedition, Zoo eranter princeps" in being larger and in having i6 tentacles and numerous gastric cirri. The medusa is 9 mm . high and 6 mm . wide. The tentacles are perradial, interradial, and adradial, the largest being the first named, and the last quite short and apparently immature. There is an ectodermal pigment spot on the exumbrella side of the base of the 8 perradial and interradial tentacles. A ridge of nettle cells extends toward the apex of the bell from
the base of each tentacle. These pigment spots and ridges are not seen in Tessera princeps. the base of each tentacle. These pigment spots and ridges are not seen in esseral prince ps. trniola of the central stomach. The 4 interradial pits of the subumbrella are deeper than in \mathcal{T} essera. Altogether all of the differences between \mathcal{T} essera and \mathcal{T} esserantha are such as one would expect to find in one and the same medusa in advancing stages of growth.

Tesserantha connectens was found by the Challenger near the island of Juan Fernandez, South Pacific, at a depth of 2,160 fathoms. It is elaborately described by Haeckel, 1881 .
Tesseraria scyphomeda Haeckel, 1880 (Ibid., p.
3), has a goblet-shaped bell, 10 mm . wide, I5 mm . high. 32 tentaclès equal each to each and not quite as long as the bell-diameter. 4 simple rows of gastric cirri. 4 horse-shoe-shaped gonads.

Found in Bass Straits between Australia and Tasmania. One specimen in Godeffroy Museum.

Genus DEPASTRUM Gosse, 1858

Depastrum, Gosss, 8858 , Annals and Mag. Nat. Hist., Tol. 1, ser. 3

The type species is Depastrum cyathiforme of the northern coasts of Europe, first described by M Sars, 1846 , as Lucernaria cyathiforme. Gosse 1858, established for it the genus Depastrum.
generic characters.
Stauromedusæ with 16 clusters of tentacles, 4 perradial, 4 interradial, and 8 adradial, arranged in one or in several rows around the bell-margin. Tentacles are all similar each to each, and are hollow, and terminate each in a nematocyst-knob. There may be one or more tentacles in each perradius and interradius. No marginal anchors With divided stomach-pouches as in the Cleistocarpidx. An unbroken mach leaving a wide ng-muscle. 4 small, interradial partal sho-shaped gonads with their convexities inward
and free ends directed centripetally. A 4 -sided throat-tube. An aboral stalk serving for attachment. The adradial lobes are reduced to 8 barely discernible sinuosities.

Depastrella Haeckel, with 16 clusters of marginal tentacles arranged in a single row, is probably only the young of Depastrum. Depastrella appears to be intermediate between the Tesseranthinæ and the Lucernarinæ.

Depastrum cyathiforme Gosse

 Calicinariat, cyathithiormis, 7 , 5
 $\stackrel{\text { P. } 376 .}{ }$

 near Repel pier)..-MAAs, I906, Fauna Arctica, Bd. 4, p. 500 .
Medusa urn-shaped, about 6 to 10 mm . wide and of somewhat greater height. Stall. about as long as bell-height, flexible, contractile, and with an irregularly expanded adhesive perradial and 4 interradial clusters of 1 to 3 tentacles each, and 8 adradial clusters ended in sisting of about 9 tentacles. The tentacles bear each a terminal knob in adult specimens and are hollow and not retractile. Mouth 4-sided, cruciform, with 4 perradial buttresses, between which there are 4 interradial funnel-like pits in the floor of the subumbrella extending downward into the tissue of the 4 septa. The 4 gonads form each an interradial horseshoe, the outer points of which do not extend to the bell-margin.

According to Clark, r863, the perradial stomach-pouches are each bridged across by a cross-partition or claustrum extending over from the sides of adjacent gonads. Thus the gonad are confined within the 4 axial chambers adjacent to the mouth and are separated by cross . Color is dirty chocolate-brown the stalk paler

This form grows permanently attached to rocks between tide-limits and does not reattach itself if torn from its anchorage.
Northern coasts of Europe. It is generally rare, and is found only locally in such places a the Firth of Clyde, Orkney Islands, near Bergen, Norway, Weymouth, England, etc.
Beaumont, 1894, Maas, I 906 , and other recent observers have come to the conclusion that Depastrella carduella Haeckel, 1880 (p. 376 , taf. 21, fign. 5 to 12), is only the young or a undeveloped stage of the Depastrum cyathiforme. Also Depastrella allmani, from Hand Island and the Orkneys, and D. polare from Spitzbergen, described by Haeckel, 1880, p: 639, appear me to be identical with D. cyathiforme.
but one tentacle in each perradius and winged in a single row around the margin and there is radial tentacles become three times as many, and the adradial ones increase so as to be arranged in several rows.

It appears to me to be fruitless to attempt to separate species upon the length of the peduncle, its winged or unwinged (contracted or expanded) condition, as has been done by Haeckel, and until more detailed studies of living specimens have proven the contrary to be the case we had better venture to assume that all of the so-called Depastrellias and other forms of the North Atlantic are synonymous with Depastrella cyathiforme.

emus STE NOSCYPHUS Kishinouye, 1902

The type species is Stenoscyphus inabai Kishinouye, of Japan, which has 8 marginal anchors, 8 clusters of adradial tentacles, and a 4 -chambered peduncle.
generic characters.
Stauromedusæ with simple, uncleft bell-margin without adradial lobes. With 8 (or is ?) perradial and interradial marginal "anchors," 8 (or 12 ?) adradial clusters of knobbed tentacles. Stomach 4-chambered as in the Eleutherocarpidæ. Gonads interradial or on both sides of the interradii.

Kishinouye would constitute for S. inabai a new family, the Stenoscyphidæ, which would be intermediate between Haeckel's Tesseridx and Lucernaridx. S. inabai has a 4 -chambered stalk and 8 separate, adradial gonads.

Broch, 1907, describes a medusa which may belong to the genus Stenoscyphus but which has in (6 perradial and 6 interradial) marginal anchors and I2 adradial clusters of tentacles The mouth is 6 -rayed instead of 4-rayed, as in S. inabai. A variation in the number of ray may be expected in these degenerate me
rate the 6 -raged from the 4 -raved form.

Stenoscyphus inabai Kishinouye

vol. 1

\qquad
\qquad
About 25 mm . long, elongate, narrow, funnel-shaped, and quadratic in cross-section. Stalk with 4 interradial grooves. Exumbrella smooth; subumbrella beset with large, urn-
shaped groups of nematocysts. The 8 principal tentacles are large, round, adhesive bodies shaped groups of nematocysts. The 8 principal tentacles are large, round, adhedial clusters
(anchors). of about 25 each. There are neither arms nor lobes to the subumbrella. The ringlike coronal muscle is well developed and entire. 4 long, deep, interradial, gastrogenital pits extending to the aboral end of the bell. 8 gonads, in form of 4 pairs of bands along the interradial muscles. Each gonad composed of 40 sacs in 2 rows.

Kata-ura, Ki Province, and Misaki, Japan. In winter. Rare.
Attached to Sargassum. The animal can detach itself from the Sa

Stenoscyphus (?) hexaradiatus Broch.

Bell-shaped, with a cylindrical peduncle somewhat longer than height of bell. Bell about 6 mm . wide, total height of stalk
together with bell Io mm. Throat together with bell Io mm. Throat
tube short, 6 sided. Peduncle procube short, 6 -sided. Peduncle pro vided with 6 longitudinal muscles. Fr. 334 -- Stenoscyphus inabia, after Kishinouye, in Jour. College of Science 12 marginal anchors, 6 radial and Fico. 335 - Stenyocyphans. hexaradiatus, after Broch, in Report of the Second very much as ordinary tentacles, but bent in the middle in a knee like form, and each provided with an abaxial cushion. Tentacle-clusters arranged in I2 adradial groups, each composed of 7 to 10 tentacles which arise in several rows from the bell-margin. Among each cluster of suctorial tentacles there are one or more tentacles which resemble the marginal anchors. 6 horse-shoe-shaped, folded gonads with their convex sides abaxial. Th two wings of each horse-shoe do not extend to the circular muscle. Color (?)

This medusa is distinguished by its 6 -rayed structure, whereas in S. inabai the peduncle is 4 -sided and there are 8 adradial tentacle-clusters instead of 12 as in S. hexaradiatus. It is possible, as Broch states, that S. hexaradiatus may be the type of a new genus, but we must
await results of future studies before deciding this point. Unfortunately there is only one await results of future studies before deciding this point. Unfortunately there is only one
specimen, obtained by the Fram off Fosheims Peak, Arctic Ocean, on the second expedition. specimen, obtained by the Fram off Fosheims Peak, Arctic Ocean, on the second expedition.
A closely allied form from the Kurile Islands is described by Kishinouye, rgog, under A closely allied form from the Kurile Islands is described by Kis
the name Thaumatoscyphus distinctus. (See Appendix to this volume).

Genus LUCERNARIA O. F. Müller, 1776 .

fign, taf. 22-25.-MAas, 1906, Arktischer, Bd. 7, P. 7ri.-Kassanow, roor, Zeit. fuir wissen. Zool., Bd. 69, P. 287, it Axtres, , 8892, Zoolog. Jalarb., Abth. Syst., Bd. 6, Pp. 378, , 391.
The type species of this genus is Lucernaria quadricornis from the northern Atlantic
and of Europe, Greenland, and America. coast of Europe, Greenland, and America.
generic characters.
Stauromedusæ with 4 simple perradial stomach-pouches as in Eleutherocarpidx. Without marginal anchors or marginal papillæ. Peduncle single-chambered with 4 separate out marginal anchors or marginal papiliæ. Peduncle single
tæniola or partial septa. 8 adradial lobes which bear tentacles.

Antipa, 1892, would restrict Lucernaria to include forms with gonads of simple structure, whereas "Lucernosa" he would institute to define forms having complex gonads made up of respect he follows the suggestion of Haeckel, I88I, 62 ridges. In this respect he follows the suggestion of Haeckel, I881, p. 62.
entoderm of the subumbrella, and in many of the species they develop transverse ridges, and these may become so marked as to appear as deep foldings across the gonad, thus dividing it into a series of more or less sac-like corrugated pouches. This is, however, a relative matter and can not be safely used as a generic distinction; moreover, I think we should, if possible, avoid founding genera upon details of internal anatomy requiring dissection to determine their condition.

Kassianow, 1901, finds that in Lucernaria, Craterlophus, and Haliclystus there is a plexus of bipolar ganglion cells in the ectoderm of the exumbrella. These ganglion cells have each two nuclei. There is a motor center at the point of each arm, and the nervous epithelium
spreads out from the bases of the tentacles. The perradial and interradial anchors are not motor centers as one would expect them to be were they derived from rhopalia

The early development of Lucernaria has been studied by Kowalevsk Anzeiger, Jahrg. 7, p. 712), who found that the eggs and sperm were discharged in the Bay of Sebastopol near evening in August. The segmentation is total and equal, and the entoderm is apparently formed by delamination. A single, central, entoderm cell was seen, however, with a slender prolongation extending from between the ectoderm cells, and thus it is possible that the entoderm may originate from one of the ectoderm cells which withdraws into the interior. The larva elongates, the entoderm becoming a single linear row of cells, and the ectoderm becoming very thin at the ends. The ectoderm is not ciliated, but the larva creeps about. On the fourth day the larvæ attach themselves and become flat and rounded, and
the entoderm forms a mass instead of a single layer, as previously. The larvo then encyst themselves in a hard, secreted covering, within which they remain for about two weeks; after escaping they became lost to observation. Fol, 1873, found also that in Lucernaria the segmentation is complete and results in the formation of a single-layered blastosphere, which elongates, becomes ciliated and 2 -layered. After this it becomes attached. 8 small, tentaclelike, marginal bodies, 4 perradial and 4 interradial, appear, but soon degenerate and disappear. Thus apparently Lucernaria is descended from a Haliclystus-like ancestor. Hornell, 1893 states that 8 marginal anchors are found in the young medusa, but disappear in the adult.

STAUROMEDUSE-LUCERNARIA.

Lucernaria quadricornis 0. F. Müller.

wissen. Zool., Bd. 12, p. 20.-TAschinibrc, 1877, Halle, Zeit. ges. Naturw., Bd. 49, p. 82, taf. 2, ig. 2.
Disk about 50 to 60 mm . in diameter and, together with the peduncle, 50 to 70 mm . in height. The bell is of the shape of a 4 -sided funnel and about twice as wide as high. Peduncle
somewhat longer than the bell-height and with 4 longitudinal, interradial strands of musclefibers. Bell-margin divided by 8 clefts or notches, the 4 perradial ones being about twice as wide and deep as the 4 interradial; thus the 8 arms are brought quite close together in 4 separate pairs. Each arm bears roo to I20 tentacles. The stomach gives rise to 4 wide, perradial pouches, which are lined on their edges by the 8 gonads.

Found on the northern coasts of Europe, on the Greenland coast, or very dark brown. America, north of Cape Cod. It has never been taken south of Massachusetts Bay. Very rare on American coast.

Complete descriptions and good figures of this medusa have been given by Sars, 1846 ; Carus, 1857; and Taschenberg, 1877.

Lucernaria "pyramidalis" Haeckel $=\mathrm{L}$. quadricornis (?)
Lucernaria pyramidalis, Hascker, i880, Syst. der Medusen, P. 39r, taf. 22, ro fign.
Bell 4 -sided and pyramidal, about 40 to 50 mm . wide and (with the style) 90 to 100 mm high. The 8 arms grouped in 4 pairs, the 4 perradial notches of the bell-margin being twice as wide and deep as the 4 interradial. Each arm bears a large cluster of I 30 to 140 tentacles.

Peduncle about 0.25 to 0.33 longer than bell-height. 4 short, blunt trniola at its free distal end and a sharply marked pyloric stricture at its proximal end at base of bell. 4 linear, interradial strands of muscle-fibers traverse the length of the peduncle. Mouth cruciform, with 4 short, folded lips. The gonads are 8 blindly ending, transversely folded bands, grouped into 4 interradial pairs. They begin on the floor of the subumbrella at a short distance above the pyloric stricture and extend only to the crotch of the bell-arms. They diverge centrif
qally outward, and the components of each pair are separated one from another by the 4 interradial septa. The gastric filaments in the regions of the gonads are small but very numerous.

This form is found on the Labrador coast. A good description of it is given by Haeckel, 1880. It is certainly closely related to, if not identical with L. quadricornis, but Haeckel states that the peduncle is separated from the bell by a pyloric stricture, or ring-furrow, which is not the case in L. quadricornzs. Haeckel studied only preserved specimens and I strongly sus-
pect that this so-called pyloric constriction may have been caused by unnatural contraction.

Lucernaria walteri Antipa.

verrosa walteri, Asmrye, 1892, Zoolog. Jahrb., Abch. Syst., Bd. 6, F. 379 , taf. I7, fign. I-9
150 to 160 mm . high and 55 to 60 mm . across the bell. Bell goblet-shaped; stalk round, single-chambered, somewhat higher than the bell. Stalk with 4 well-developed, linear, inter-
radial, longitudinal muscles. 8 arms arranged in pairs with the 4 perradial concavities between he arms twice as wide at the 4 interradial notches of the margin. Each arm with a terminal the arms like cluster of 700 to 750 short, knobbed tentacles. 8 wide, lancet-shaped, adradial gonads, extending to ends of the 8 arms; they are folded, band-like, and lie in the subumbrella wall of the perradial stomach-pouches. The cavity of the stalk extends directly into that of the bell, without a pyloric stricture. Color light brown. East Spitzbergen, Arctic Ocean. This is one of the largest known Lucernarians. Special description given by Antipa.

Lucernaria kükenthali Antipa

Lucerrosa kikikenthali, Astripa, 1892, Zoolog. Jahrb., Abth. Syst., Bd: 6, P. 386, taf. 88, fign. 10, II
More than x 50 to 160 mm . high, 55 to 60 mm . wide across the bell. Bell goblet-shaped, omewhat higher than wide. Stalk not quite as long as the bell itself, with no constriction or other sharp distinction between stalk and bell. Stalk round, single-chambered, with 4 well-developed, linear, longitudinal muscles. 8 arms arranged in pairs. The 4 perradial arm has a terminal, ball-like cluster of 800 to 850 short, knobbed tentacles. Gonads are 8 small, lancet-shaped, cross-folded bands extending to ends of the 8 arms. Color (?) East Spitzbergen, Arctic Ocean. Described in detail by Antipa, 1892. I am inclined to suspect that this is only a variety of, if not identical with, Lucernaria walteri. It appears to be distinguished only by its narrow lanceolate gonads and slightly wider perradial notches.

Lucernaria haeckeli Antipa.

Lucerrosa haeckeli; AnTrPA, 1892, Zoolog. Jahrb., Abth. Syst., Bd. 6, p. 388 , taf. 18, fign. 12-I4.
60 to 65 mm . high and 27 mm . wide at widest part, which is below bell-margin. Bell val, goblet-shaped, widest near middue. Stalk conical, wide, and hardly one-third as long as bell. Stalk single-chambered with 4 interradial, longitudinal muscles. 8 short arms arranged in pairs. The 4 perradial notches of the margin only a little wider and deeper than tentacles. 8 very wide gonads, so wide that they overlap one another. The gonads extend not quite to bases of arms, and quite fill the lower parts of the radial chambers of bell.
This species is distinguished from L. bathyphila by its short bell-stalk and the position and shape of its gonads. Color (?) East Spitzbergen, Arctic Ocean.

Lucernaria infundibulum Haeckel.

Bell funnel-shaped, flat, not quite twice as wide as high, 24 mm . wide. Peduncle somewhat less than 10 mm . long, 4 -sided, pyramidal, and single-chambered. The medusa is distinguished by having 4 hollow, interradial tæniolæ each with a funnel-like, central cavity extending to lower end of peduncle, recalling the condition seen in the aboral end of bell in Periphylla. Each hollow septum bears along the entire length of its side walls a pair of welldeveloped longitudinal muscles and 2 rows of gastric filaments. The 8 umbrella-arms are arranged in 4 pairs, the 4 perradial notches being wider than the 4 interradial. Each arm has

60 to 80 tentacles. 8 gonads extending from middle of peduncle to base of arm. Found at Spitzbergen. Described by Haeckel from a preserved specimen.

Lucernaria campanulata Lamourour

 Bd. 69, p. 370, fig. rr.

This medusa is at once recognized by its symmetrically octagonal disk with its 8 arms 45° apart and with equally developed notches between them. There are no longitudinal muscles in the 4 interradial longitudinal ridges of the peduncle. The medusa is 20 to 30 mm . wide and 30 to 40 mm . high, including the peduncle. Color very variable, being yellowish, red, brownish, etc. Found along European coasts from the Black Sea and Mediterranean o southern England, Ireland, and Wales. Graeffe states that it is found only locally at Trieste, records it from Brighton near Dunedin, New Zealand, but he gives no description.

For an account of Kowalevsky's observations upon the early stages of the larva see genus Lucernaria.
Hornell, 1893 (Nat. Sci., vol. 3, p. 208), states that 8 marginal anchors are found in the young medusa, but they soon disappear and are not found in the adult. This leads one to con-

Frc. 337 .-Lucerraria barkyphila, after Haeckel, in clude that Lucernaria is derived directly from Haliclystus. Indeed Horst, 1893 , inds that the variations in number and development of the marginal anchors is so great that he is inclined to consider
Lucernaria to be identical with Haliclystus. Kassianow, Igor, records the capture of an abnormal specimen having 2 medusa bells arising from one stalk.

Lucernaria bathyphila Haeckel.

Lucernaria bathyphila, Harckrı, 1880 , Syst. der
Medusen
M.
Mot Medusx Challenger Expedition, Zool., vol. 4,

he species of Lucernee synopsis of 1881, gives a very detailed and fully illustrated description of this species.

Lucernaria australis Vanhöffen.

Luccernaria australis, VANHÖ̈ren, ryo8, Deutsche Südpolar-Exped., ygor to 1903, Bd. ro, Zool. 2, P. 32, fign. X, 2.
Described by Vanhöffen from an immature specimen which had neither gonads nor peduncle.

Bell 10 mm . high, 9 mm . wide, thimble-shaped, with sloping sides. No basal stalk, but with a weakly developed ring-furrow at aboral end of bell, and an indication of the beginning of a single-chambered peduncle. 8 short arms, 2 to 2.5 mm . long, grouped in pairs somewhat
closer in the interradii than in the perradii, and with the perradial concavities of margin deeper than the interradial. 25 to 30 short tentacles, with small terminal knobs on each arm. There were 7 very small, tentacle-like marginal bodies somewhat asymmetrically placed near the 4 perradial and 3 of the interradial points of the bell-margin. It is therefore possible that this medusa may be a young Haliclystus, but if the marginal bodies degenerate it is a Lucernaria, for such a course of development is known according to Hornell, 1893, in the European species of Lucernaria. The 4 perradial lips of the cruciform mouth are folded and are at about half the distance between the depth of bell-cavity and margin.

Wide ring muscle at margin of subumbrella and 8 strands of radial-muscles extending outward to the tentacles. These radial strands are one-third wider than the ring muscle, They inclose 4 narrow, triangular areas in the interrauscle strands exhibit many large nettlethe perradii. These subumbrella ung bastric flaments in each of the 8 rows. Found cells. There are abour at Gauss Station,

Schizodiscus, preoccupied by Kittl, I89r.
Genus Kishinouyea, nom. nov
Shamens, Kisumocry, 19o2, Jour. College Sci., Tokyo, vol. 17, art. 7, p. 5.
The type species is K. nagatensis of Japan, first described by Oka under the name Lucernaria nagatensis.

generic characters.

Stauromedusx with 4-chambered stomach as in the Eleutherocarpidx, and without adhesive anchors. Umbrella deeply notched, with 8 adradial lobes. 8 adradial clusters o knobbed tentacles. Peduncle 4 -chambered without muscle-fibers in the tæniola. Gonad 8 adradial bands of laterally oblong sacs.

This genus is very closely allied to Lucernaria and is distinguished only by its 4 -chambered aboral stalk. In young medusx, however, it is single-chambered, as in Lucernaria, but the 4 interradial septa, or tæniola, unite near the pyloric regron as growth proceeds, and thus th peduncle comes to have 4 perradial, separate chambers.

Kishinouyea nagatensis.
maria naggetensis, Oкx, r897, Zool. Mag. Tokyo, vol. 9, p. 67, plate I. Also; Annot. Zool. Jappon. Tokyo, vol. I, p. 141 Schizodiscus stagatersis, Kishinouye, 1902, Joum. Science College, Tokyo, vol. 17, art. 7 , P. 6, plate I, figs. 3-6.

The 8 adradial lobes are united in pairs, so that the 4 perradial notches are about twice

${ }^{\text {Fig. }} 33^{88-\text { Kishinouyea nagatensiss, after Kishinouye, }}$ in Jour. Col. of Science, Tokyo
Gonads, 8 broad; adradial bands of laterally oblon ments branched, few in number. surroundings. Japan.

Genus HALICLYSTUS Clark, 1863 .

The type species of this genus is H. auricula from the Atlantic coasts of Europe and of
en England, United States. New England, United States.
generic characters.
Stauromedusx similar to Lucernaria but with 8 perradial and interradial marginal anchors, and with a 4 -chambered, aboral peduncle. The embryology has been studied by become lost as growth proceeds.

The regeneration of Haliclystus has been studied by A. Meyer, 1865 (40 ste Versamml deutsch. Naturforscher Aerzte, Hannover, p . 217), who gives a brief account of his experiments. It appears that the medusa possesses considerable regenerative capacity. The style is regen erated if it be removed, and if only the lower end of the style be cut off the medusa usually regenerates a new aboral end; but occasionally a bell is regenerated, thus giving an anima
with 2 bells. Somewhat similar results were attained by Kassianow, igor, on Craterlophus.

	H. octoradiatus.	H. salpinx.	H. stejnegeri.	H. auricula.	H. antarcticus.	H. kerguelensis.
Umbrella.	$\begin{aligned} & \text { Conical, surface } \\ & \text { flat, } 2 \text { to } 3 \text { times } \\ & \text { as broad as high. } \end{aligned}$	Pyramidal, octangular, much broader than high.	Conical, surface flat, a little broader than high.	Pyramidal, octangular, almost as broad as high.	Flat, twice as wid as high, conical.	As in H. antarc ticus.
Pesuncle.	Cylindrical, almost as long as height of umbrella; no internal grooves.	Quadrangular, prismatic, considerably longer than height of umbrella.	About half as long as height of umbrella, with 4 tudinal grooves.	Almost as long as height of umbrella, with 4 deep longitudinal grooves.	4 -sided, prismatic half to twothirds as long as height of umbrella. With 4 longitudinal tracted ?)	Twice as high as umbrella. Prismatic, 4 -sided.
Eight arms.	$\begin{aligned} & \begin{array}{l} \text { 45 apart. Each } \\ \text { arm with } 30 \text { act } 60 \\ \text { tentacle. } \end{array} \end{aligned}$	45° apart. ach arm with 60 to 70 tentacles.	45° apart. Each arm with 70 to roo tentacles.	United in pairs. Each arm with 100 to 120 tentacles. Interradial clefts only half wide as perradial	45° apart and similar each to each. Each arm Ioo tentacles.	As in H. antarcticus, but with not more than 50 tentacles on each arm.
Eight marginal anchors	$\begin{aligned} & \text { Large, egg-shaped } \\ & \text { or nearly club- } \\ & \text { shaped, one- } \\ & \text { fourth as long as } \\ & \text { breadth of } \\ & \text { peduncle. } \end{aligned}$	Very large, as long as arms, obliquely trumpetshaped.	Large, egg-shaped half as long as breadth of peduncle.	Large, shaped like coffee-beans, as long as peduncle.	Large, biscuitshaped, about as long as width of peduncle.	Small, oval, onls one-third as wide as width of peduncle. of peduncle.
Gonads.	In each gonad 20 to 30 large sacs in 2 longitudinal, alternate roms. alternate rows.	In each gonad 40 to 50 sacs in 4 longitudinal rows.	In each gonad roo to 150 sacs, 6 to 8 sacs abreast the broadest part.	In each gonad ioo to 150 sacs in 6 to 8 radial rows. to 8 radial row	8 gonads, widely separated one from another, 100 to 150 sacs rows in each gonad.	8 widely separated, broad, lancetshaped gonads
Where	North Atlaticic.	Coast of Maine, United States.	Bering Island, Commander Islands, North Pacific.	North Atlantic. Coasts of Europe and America	Island of South Georgia, Antarctic Ocean.	Kerguelen Island, Antarctic. Ocean

Haliclystus auricula Clark.

Lucernaria auriculla, Rataxz, r866, Müller's Zool. Dan., Bd. 4, p. 35 (exclus. synor)

Disk about 20 to 30 mm . wide and (with the style) 20 to 30 mm . high. Bell-margin 8 -sided. The 4 interradial notches between the arms being only half to two-thirds as wide as the 4 perradial clefts. Each arm terminates in a large cluster of 100 to 120 tentacles. Thes tentacles are each about quarter as long as bell-diameter. They are hollow and terminate in a globular tip thickly covered with nematocysts. There are 8 large, perradial and interradial, marginal anchors (colletocystophores), which are coffee-bean-shaped and mounted, each one, upon a short cylindrical base. These organs are much larger than in the European H. octo-cross-section, there being 4 deep interradial lon itudinal furrows beneath which are 4 well
developed strands of longitudinal muscle-fibers. Aiternating with these are 4 perradially situated, longitudinal chambers which communicate with the central stomach in the umbrella There are 8 broad, adradial gonads, grouped into 4 interradial pairs. Each gonad is wide and triangular. These gonads begnt a litte above the point of junction of the stalk with the disk and extend to the ends of the 8 arms. Each gonad contains 100 to

FiG. 339 .-Haliclystus auricula, fiter Clark, in Smithsonian Contributions to Knowledge. The smaller
Color very variable, but each medusa is commonly of one color, parti-colored individuals being very rare. Individuals are either blue, green, yellow, olive, orange, or very rarely red pint

This species is found in Massachusetts Bay and off the northern coasts of Europe from England to Norway. Clark reports it from Norton Sound, Alaska, and Bigelow from Labrador and Newfoundland. It is only locally common on the New England coast.

It may be distinguished from H. octoradiatus by its more slender bell and stalk, its large
arginal anchors, and the greater number and smaller size of the genital sacs upon the gonads. marginal anchors, and the greater number and smaller size of the genital sacs upon the gonads. each gonad consists of only two rows of saccules. He calls this medusa H. tenuis.

Haliclystus octoradiatus Clark.
 Cont. Nat. Hist. U. S.,., vol. 4, f. P. 176 .

 Halicy ${ }^{\text {Vitet }}$

p. 746

Disk 20 to 30 mm . wide and, with the stalk, 20 to 30 mm . high. Disk flat and about 2 to 3 times as broad as high. The 8 adradial arms are 45° apart, not grouped in 4 more or less approximated pairs, as in H. auricula. Arms very wide, concavities of bell-margin shallow. Each arm bears a terminal cluster of 30 to 60 tentacles, instead of 100 or more, as in H. auricula. The 8 perradial and interradial marginal anchors (colletocystophores) are egg-shaped, and about one-fourth as long as diameter of stalk. Stalk cylindrical, without
longitudinal furrows, 4 -chambered, and with 4 interradial, longitudinal strands of musclefibers. There are 8 separate gonads which do not extend quite to the end of the arms or to the aboral septa. Each gonad contains only 2 rows of alternately arranged, large, genital sacs.

Color quite variable, being either grayish-yellow, brownish-yellow, or grayish-brown.
Found on the North Atlantic coasts of Europe, on the Greenland coast, and at Spitzbergen. The most complete descriptions of this species are given by Sars, I829; Keferstein, I863;
Browne, I895; and Gross, Igoo. Its variations have been studied by Hornell, I893, and Browne, 1895 ; and Gross, 1900. Its variations have been studied by Hornell, 1893 , ard
by Browne, 1896 . The abnormal forms are very irregular, symmetrical variations rarely appearing. The medusa is one of the most variable known. At Jersey, England, according according to Browne, only 34 per cent were abnormal and the aberrations were quite different from those found at Jersey. We are unable to determine whether this difference is fostered by isolation or is due to the effect of local influences in the environments of Plymouth and Jersey. It may also be due to a difference in variative tendency in the medusæ of the two places. The development of H. octoradiatus has been studied by Bergh, 1888. The egg is fertilized after being discharged into the water and then it retracts somewhat from the vitelline membrane. 2 polar bodies are found; the segmentation is total and equal, and there is no cleavage cavity. The entoderm appears to be formed by polar ingression of cells into the center of the solid morula which is at first spherical but afterwards it elongates into a rod-like form, which in a single row as in the planula of Solmundella. The planula of H. octoradiata is not ciliated, however, but creeps about by means of worm-like movements. It then attaches itself by the anterior end as do other planulx of Scyphomedusæ. At first the tentacles are not united into definite clusters but are distributed around the bell-margin, but 8 tentacles are more or less isolated and lie in the perradial and interradial radii. These form the marginal anchors.

The best description of the development of the planula is given by Wietryykowski, rgog (see Appendix to this Volume).

Bergh, 8888 , describes an abnormal specimen of H. octoradiatus with a small bud arising from the side of its bell.

Haliclystus salpinx Clark.
Plate 56 , figs. I to 4.
Galiclystus salpinx, Crank, H. J., 8863, Journ. Boston Soc. Nat. Hist., vol. 7 , p. 563 .-Acassir, A., 1865 , North Amer. Acal.,

Disk 25 mm . wide and (with the stalk) 20 mm . high. The 8 adradial arms are 45° apart, and their ends are rounded. Each arm bears 60 to 70 very slender tentacles, the globose tips of which are smaller than in H. auricula. The 8 marginal anchors are as long as the arms, slender, and obliquely trumpet-shaped. The edge of the trumpet is considerably thickened except at a narro. center of theadth of the trumpet. Aboral stalk relatively longer and more slender than in H. auricula, 4 -sided in cross-section, with 4 longitudinal rows of interradial muscle-fibers. The stalk is 4 -chambered and about 12 mm . long. The 8 genital organs are not so widely separated as in H. auricula; their broader ends project only about half-way into the arms. The genital sacs of each gonad are arranged in 4 radiating rows, the marginal rows being shorter than the 2 middle rows. All of these sacs are of the same size and there are 40 to 45 of them in each row.

This species was obtained by Stimpson at Mount Desert Island, Maine. The best description of it is that of Clark, 1863. Our figures are drawn from specimens obtained upon 1005. Graeffe, 1884, appears to have found this species at Trieste, Adriatic Sea, in June and July.

Haliclystus stejnegeri Kishinouye.
Haliclystus stejnegeri, Kishrinouve, 189g, Proc. U. S. National Museum, vol. 22, p. i26, figs. I-3
Bell conical, funnel-shaped, $\mathrm{I}: 33$ to I .5 times as broad as high. 18 mm . wide. Peduncle hearly quadrate in cross-section and about half as long as umbrella; its 4 interradial, longitudinal axis and divide the internal space of the peduncle into 4 perradial chambers which are continuous with the 4 perradial stomach-pouches. The surface of the exumbrella is smooth and the line of demarcation between the stalk and the umbrella is distinct, although there is no constriction at this point. There are a few small clusters of nematocysts at the radial sinuses of the umbrella margin. The radial muscle plates are, as in other species of Haliclystus, developed in the perradii and interradii of the subumbrella. The margin of the mbrella displays 8 equally spaced, adradial arms, all of the same size. The 8 incisions are There 8 large,

There are δ large, egg-shaped, perradial and interradial "anchors," which are about situated in the concavities of the clefts, alter-arm-lobes. There are 8 adradial clusters of knobbed tentacles, one at the end of each of the 8 arms. Each cluster contains 70 to 1oo tentacles of
Manubrium short and quadrangular, the lips reflected outward. The 8 rows of welldeveloped gastric filaments extend from the base of the throat-tube to the proximal ends of the 8 gonads. The 8 gonads are broad, leaf-shaped, tapering at both ends, and touch each other along their proximal halves, so that the surface of the subumbrella is almost entirely in tows and those the broadest part of each gonad. Each gonad is turned over in the 4 principal radii and is continuous with the mesentery

Preserved specimens are grayish or pale brown, semi-transparent, with a dark-brown or nearly black streak at bell-margin.
A number of specimens were found at Bering Island, one of the Commander Islands, North Pacific, in summer.

The species is well described and figured by Kishinouye (see text-figure 340)

Haliclysus antarcticus, Prifrerr, r889, Mittheil. Naturhist. Museum Hamburg, Jahrg. 6, p. гб.
Bell flat, 17 mm . wide to bases and 27.5 mm . wide to ends of arms. Height 11.5 mm . to subumbrella disk and 15 mm . to ends of arms. The stalk is 8 mm . long, flexible, and when expanded it is about two-thirds as long as bell-height. It has 4 interradial, longitudinal muscles and is 4 -sided in cross-section, the longitudinal muscles being in the 4 flat or grooved sides. The attached end of the stalk is swollen. There are 8 adradial arms 45° apart with the 8 clefts all of equal depth, and each arm has.more than 100 tentacles; 8 large biscuitshaped, marginal anchors about as long as width of stalk; 8 wide, lancet-shaped gonads, widely separated one from another and extending to ends of arms. The number of sacs in 150 in 6 to 8 longitudinal rows. Stalk single-chambered thus illustrating the at least 100 to ship between Haliclystus and Lucernaria

The medusa is a beautiful bue-viol
tentacles. - Found at South Georgia, Antare with lighter, somewhat reddish anchors

Haliclystus kerguelensis Vanhöffen

(1)

Bell 27 mm . wide across the outstretched arms exclusive of the tentacles, and to mm . high. Arms 45° apart, the concavities between them all similar each to each as in H. antarc
icus. Peduncle prismatic, 20 mm . long and 3 mm . wide. Not quite 50 tentacles in. each adradial cluster. Marginal anchors only one-third as wide as the peduncle in its expanded state. 8 wide, lancet-shaped gonads.

Bell and peduncle sandy-brown with a play of green over the surface. Gonads dark olive-brown and plainly visible through the walls of the lighter colored bell. Terminal knobs Found at Observat
stems of Macrocystity Bay, Kerguelen Island, Antarctic Ocean; in July, growing on
This form is closely
and apparently a longer peduncle, although the stalk has fewer tentacles, smaller anchors, racted in Pfeffer's preserved specimens. There are also color differences between the two forms.

Genus halimocyathus Clark, 1863.

The type species of this genus is H. platypus Clark, from Massachusetts Bay.

generic characters.

Stauromeduse with 4 perradial, gastrogenital pockets in the subumbrella wall of the 4 tomach-pouches, as in Cleistocarpidx. With 8 marginal anchors (4 perradial and 4 interadial) 8 adradial clusters of terminally knobbed tentacles. 4 interradial, horse-shoe-shaped onads. 8 adradial arms.

This genus is very closely related to Haliclystus, but is distinguished by the partitions across its 4 perradial stomach-pouches, such as are found in all Cleistocarpidx.

Halimocyathus platypus Clark

Galimocyathus platypus, Clark, H. J., 1863, Journ. Boston Soc. Nat. Hist., vol. 7, P. 537.-Acassiz, A., 1865, North Amer.

Disk deep funnel-shaped, about 6 mm . wide, and (with the peduncle) io mm . in height. The 8 arms are nearly twice as long as broad and one-third as long as bell-height from peduncle to margin. Each arm bears I7 to 20 thick, pistilliform tentacles, about as long as greatest to margin. Each of arms; the tentacles upon each arm are arranged in 5 rows, there being about 7 tentacles in the middle row, 4 in each row on either side of the latter, and one in each of the outermost positions. The 8 marginal anchors are small and reverted, being only one-third as long as shortest tentacles, but proportionally broader; their length is a little less than 3 times their radial diameter. The peduncle is about half as high as the disk; at the narrowest part, where it joins the disk, its diameter is nearly half its length, and from there it broadens into a wide base having a width equal to the length of the peduncle; it is round, or very slightly
furrowed at 4 points opposite the 4 interradial muscles. The 4 separate longitudinal chambers of the peduncle are very voluminous and close together, but the longitudinal septa between them are complete. There are 4 horse-shoe-shaped gonads; the centripetal parts of each horse-shoe are united across the inner ends of the 4 interradial parts while the free, outer parts extend to the neighborhood of the marginal anchors. Each arm of the horse-shoe contains ${ }^{15}$ to 17 genital sacs. The edges of adjacent gonads are joined by a cross partition as in other Cleistocarpidæ.

A single specimen of this species was found by Clark at Chelsea Beach, Massachusetts, where it was found attached to Zostera, along with H. auricula. It has not been seen since larks day, and indeed the contamination of the sea-water in this region has destroyed the New England coast.

Halimocyathus lagena Haeckeel.
Holothuria lagenam referens, Mǚuer, O. F., $\mathrm{T776}$, Prodromus Zool. Danica, p. 232.

- 4, , 14 .
.Bell urn-shaped, much deeper than broad. It passes from a rounded base abruptly into the peduncle. Bell about 5 to 7 mm . wide, and (including the style) about 20 to 30 mm . long. long as broad and grouped into 4 interradial pairs. 8 maroinal anchors have the same form as the knobbed tentacles, but are somewhat smaller. 4 horse-shoe-shaped gonads, the distal ends of which extend radially outwards are separated from the bell-margin by a wide space. Each horn of the gonads exhibits 12 to 14 genital sacs.

Color black or dark brown, rarely reddish-brown or yellowish-brown.
Found upon the northern Atlantic coasts of Europe and upon the coast of Greenland. It occurs on the New England coast north of Cape Cod, but is very rare.
 The type species is Craterlophus tethys of Helgoland, German Ocean.

> generic characters.

Stauromedusx with 8 adradial lobes and with 4 perradial gastrogenital pouches in the subumbrella wall of the 4 perradial stomach-pouches as in the Cleistocarpidx. Without perradial or interradial marginal anchors or marginal papillæ. The peduncle is 4 -chambered.

According to Antipa, and Gross, this medusa may sometimes have 8 small tentacles, 4 perradial and 4 interradial, in the places of the anchors of other Stauromedusæ. It is probable, therefore, that Craterlophus is actually identical with Halimocyathus.

Craterlophus tethys Clark

 (anatomy).-KasssaNow, Igor, Zeit. für wissen. Zool., Bd. 69, pp. 299, 372, taf. 22, 24, 25.
Bell deep goblet-shaped, higher than wide, 15 to 25 mm . wide, and 25 to 30 mm . high, including peduncle. Peduncle short, 4 -sided, prismatic, and 4 -chambered, one-fourth to oneare short, wide, and 45° a part. 60 to 80 knobbed tentacles upon each arm. There are normally no marginal anchors, although Antipa, I892, and Gross, 1900, record abnormal specimens with 8 small tentacles, 4 perradial and 4 interradial.

The 8 gonads present the appearance of a 4 -leaved cross, in the axes of which lie the 4 perradial, mesogonial pouches. The 8 arms of the gonals approach pair-wise and extend
under the subumbrella from base of throat-tube to bell-margin with their proximal ends nearly touching. Each arm of the gonads has IO to 16 feathery sinuosities and very numerous saccules.

Color variable, as in most of the Stauromedusæ, being olive-green, yellowish, reddishbrown, or dark brown.

This form is found at Helgoland, German Ocean, where it lives upon the west coast of the island upon Ulva, Chorda, or Fucus. Gross, I goo, gives the best description of its internal anatomy. Kassianow, rgor (p. 371), finds that if Craterlophus tethys be cut longitudinally from the oral pole to the middle of the peduncle, each half regenerates a new individual. although the scar remains as a constriction upon the bell and pharynx. He also reports the finding of specimens of this medusa with more than 8 marginal lobes.

Craterlophus is imperfectly separated from Halimocyathus, bearing the same relation to it that Lucernaria does to Haliclystus. We may, however, retain these generic names mainly as a matter of convenience. In both Craterlophus and Lucernaria the perradial and interradial tentacles or anchors are commonly absent, but occasionally they appear as an abnormality and in such cases the medusæ can not be separated from Halimocyathus and Haliclystus respectively.

Craterlophus macrocystis von Lendenfeld.

Umbrella deep and bell-shaped, 12 mm . high, 6 mm . wide. Stalk 8 mm . high and 3 mm . wide when extended. 8 short arms 45° a part, each with a cluster of about 30 tentacles. Gonads feathery, as in C : tethys. Color dark olive-green. East coast of New Zealand on Macrocystis. Rare

The stalk of C. macroscystis is two-thirds as long as the bell, whereas in C. tethys it is only one-fourth to one-third of this length. In other respects it resembles the very closely allied C. tethys with which it may prove to be identical.

Genus CAPRIA Antipa, 1893

Capria, AntrPA, 1893, Mitth. Zool. Sta. Neapel, Bd. xo, p. 628 .
The type species is Capria sturdzii Antipa, from the Island of Capri, Bay of Naples, Italy.

generic characters.

Stauromedusæ with 8 adradial, lappet-like arms which lack knobbed tentacles, but are each provided with a row of short, webbed, tooth-like or finger-shaped tentacles. Wart-like clusters of nematocysts on subumbrella side of each of the 8 arms. No perradial or interradial tentacles or "anchors." The circular muscle of the subumbrella is entire, not divided into 8 isolated marginal muscles. The radial-muscle is funnel-shaped and spreads over the entire surface of the subumbrella. The 4 septal edges of the perradal stomace pa lon hroat tube 8 adradial ronads, and an aboral stalk to the bell serving for attachment.

The genus Capria is the only representative of the family Capriidæ of Antipa, 1893 which may be defined as Stauromeduse with 8 adradial arms which lack knobbed tentacles but have each a row of rudimentary tentacles joined by a web, one to the other. No anchors. Ring-muscles of the subumbrella entire, not separated into 8 isolated sectors. Longitudinal muscles equally developed over the enture subumbrella. Bell prosleatherocarpidx.

Capria sturdzii Antipa

Capria sturdzzii, Amtripa, 1893, Mitth. Zool. Sta. Neapel, Bd. ro, P. 168, taf. 40, fign. $\mathrm{I}-\mathrm{I} 8$.
Body 9 mm . long and 5.5 to 6 mm . wide; globular with a short, broad basal stalk or peduncle about as long as the bell-portion itself. Basal plate of peduncle or stalk of bell normally 8 short, thick, adradial, paddle-like arms, although the single specimen found had io arms; these are hollow and devoid of knobbed tentacles, but are provided with a row of 16 to 20 tooth-like, or short finger-shaped, rudimentary tentacles which are fused one to another by a web, thus giving the appearance of a multi-toed, bird-like web-foot. There are 5 to 8 large clusters of nematocysts on the subumbrella side of each of the 8 arms. There are no "anchors" or suctorial tentacles, but the spaces around the bell-margin between the 8 arms are open and somewhat less in width than are the arms themselves. The circular muscle of the subumbrella is entire, not cut. into 8 isolated muscles, as in certain other Stauromedusx. There are 4 rows of gastric filaments along the 4 interradial tæniol from 4 -sided, with 4 interradial, longitudinal furrows. Mouth-opening cruciform and quadratic 4 -sided, with 4 interradial, longitudinal furrows. Mouth-opening cruciform and quadratic.
8 band-shaped gonads, above (aboral in reference to) the tæniola. Color yellowish-white.

Found attached to a Serpula tube dredged from a depth of 40 fathoms near the Blue Grotto, Island of Capri, Bay of Naples. It is described in detail by Antipa.

Genus LIPKEA Vogt, 1886

Lipkea, Voct, 1886, Archiv. Sci. Phys. et Nat. Génève, sér. 3, tome 16, p. 356
The type species is Lipkea ruspoliana Vogt, from the coast of Sardinia, Mediterranean. generic characters.

Stauromedusæ with 8 hollow (4 perradial and 4 interradial) arms. With a continuous circular muscle. Neither tentacles nor "anchors." There are well-developed mucous glands upon the subumbrella. The bell is attached by a sucker

The only known species is described from a single specimen found attached to a Gorgonian at a depth of 50 fathoms off the Sardinian coast, Mediterranean. It is the only Stauromedusa Lipkeidæ.

10, 11, fgs. I-17; r886, Arch. Sci. Physique At Naturelles, Geneize, ser. 3 , tome $\mathbf{1 6}$, p. 356 .
Bell flat and soup-tureen-shaped with a very short basal stalk, by means of which the animal is attached. Bell 7 to 8 mm . wide, 4 mm . high, the basal stalk only r .5 mm . long and 4 mm . wide. 8 short, blunt, hollow, marginal lappets, 4 perradial and 4 interradial in position. about 15 to 20 large, oval mucous glands (containing nematocysts?), the openings of which are scattered over the inner surface of each lappet. Subumbrella concave, but the central mouth is elevated and bordered by 4 cruciform lips. The 4 deep, conical (subgenital ?) ostia are interradial and alternate with the lips in position. Thus 4 of the 8 lappets are ir the radii of the lips and 4 others are in the radii of the (subgenital?) ostia. Ring-muscle entire, not divided into sectors, and extends around margin of subumbrella at bases of the 8 lappets. Longitudinal muscle-fibers extend radially outward from this powerful ring-muscle along the ubumbrella faces of the 8 lappets. There are also a few weak, longitudinal muscles in the xumbrella near the stalk. There are neither tentacles, "anchors," nor other marginal ppendages.

There are conspicuous clusters of gland cells in the ectoderm of the subumbrella. 4 large clusters are perradial in position and lie at the base of the 4 angles of the cruciform mouthtube. There are also 8 linear clusters of these glands at the bases of the 8 lappets on the inner side of the ring-muscle. Central stomach divided by 4 interradial septa into 4 perradial he perradial These septa do not extend into the cavities of the 4 interradial lappets, so that f these lappets. Stalk single-chambered.
No genital products were observed in the folded, membranous floors of the 4 (subgenital ?) interradial ostia, but 4 pairs of branched, gastric filaments arise from the edges of the 4 interthe folded, follicular of oesophagus. It would seem that the medusa was immature and that develop the sexual products. Medusa translucent to
re yellow.
A single (immature ?) specimen was found by Vogt attached to a Gorgonian at a depth of 50 fathoms at Alghero on the northeast coast of Sardinia, Mediterranean. Vogt describes the specimen in detail.

CORONATE--PERICOLPA.

Order CORONATÆ Vanhoffen, 1892

 Cororatax,
Damper
Valdivivia, Bd.
3, Lief.

characters of the coronate.
Scyphomeduse with marginal tentacles, a single central mouth-opening, and with the bell-margin cleft into lappets. The rhopalia arise from clefts between these lappets, and their entodermal cores contain a terminal mass of crystalline concretions of entodermal origin Ocelli may or may not be present. The medusæ are free-swimming and have no abora stalk for attachment.

With a circular, or coronal, furrow in the exumbrella, and peripheral to this there is a zone of gelatinous thickenings in the radii of the tentacles and sense-organs. These thickenings, the marginal sense-organs and the tentacles, and are in the middle (axial) lines of the marginal lappets. These marginal lappets project beyond the zone of the pedalia. The tentacles are solid, or not hollow, throughout their lengths. The throat-tube is simple, short, and provided with simple lips, without curtain-like appendages.

The families of the Coronate are as follows

```
Periphyllide CaAus, 1886.4 interradial rhopalia and 4 or more tentacles.
```



```
C,
Colaspide HA&cxFL, 1880. Numerous rhopalia, aleernating with (
```


Family PERIPHYLLID x sensu Claus, is86.

Coronatæ with 4 interradial pedalia which bear marginal sense-clubs, and with 4 , or more, pedalia which bear tentacles.

The genera of the Periphyllidæ are as follows:

Genus PERICOLPA Haeckel sensu Vanhöffen.

generic charácters.

Periphyllidæ with 4 interradial rhopalia, 4 perradial tentacles, 8 adradial lappets. The 8 gonads are adradial or on both sides of the 4 interradii.

Haeckel's Pericrypta is doubtless only a more advanced stage in the growth of Pericolpa The interradial tæniolæ are solid in the young, but become hollowed by the development of 4 pits in the floor of the subumbrella, and the gastral filaments increase, with age. In the structure of the gastrovascular system this genus resembles Periphylla, and were it not for the probability that the number of metameres apparently does not increase in the free ephyra
of the Coronatre we would be inclined to regard Pericolpa as being only the young of Periphylla; for the development of 8 adradial lappets and 8 corresponding tentacles would change the edusa to Periphylla.
The species founded by Haeckel are separated upon slight distinctions, some of which represent mere stages in growth. Probably there are but two forms, P. quadrigata with an
elongate, pointed bell and P. campana with a flat, dome-like bell; but even this can not now be determined with any degree of certainty.

This genus includes the simplest and possibly most primitive of the Periphyllidx.

Pericolpa quadrigata Haeckel.

Bell 40 mm . high and 30 mm . wide. The pointed, dome-like apical half of the exumbrella above the ring-furrow is as high as the width of the pedal and lappet-zone below. The 4 perradial tentacular pedalia are somewhat wider than the 4 interradial, rhopalar ones and omewhat longer than the 8 marginal lappets. The 4 tentacles are about as long as bellpart of the stomach leads into the gastrovascular space of bell by 4 perradial ostia, which are lined with gastral filaments. These ostia lead into a wide sinus which is interrupted by 4 short, partial septa in the interradii. Peripheral to these septa is another wide ring-sinus which sends out 8 canals in the radii of the sense-organs and tentacles. These radiating canals fork at their ends and extend around the edges of the lappets, forming a marginal ring-canal. The 8 gonads are grouped in 4 pairs on Color (?) Found in the Antarctic southeast of Kerguelen Island
by the Challenger, and apparently identical with P. galia from the east coast of Australia.

Pericolpa campana Maas.

Pericrytta campana, HAzcrezt, I88, Syst. der Medusen, P. P. 414.
Bell about 15 mm . high and 15 mm . wide, with thick gelatinous walls. A deep ringfurrow a round exumbrella separates the evenly rounded dome-like center or bell from marginal zone of lappets. The tapering and shorter than bell-radius. They are solid and their axial cores project into the gelatinous substance. These tentacles are situated in the perradii. Each of the 4 interradial marginal sense-clubs contains a terminal entodermal concretion and a ventral bulbular swelling, but no ocellus. The 8 marginal lappets are semicircular.

Stomach wide at base, and there are 4 interradial clusters, each with at least 30 gastric cirri. The stomach is connected with the gastrovascular space of the bell by 4 perradial openings. Peripheral to these there is a wide ring-sinus and this in turn gives rise to 8 radiating canals in the radii of the tentacles and sense-organs, and these fork and communicate one with another at their outer ends, forming a marginal ring-canal. The circular muscles of the tentacles. There appear to be 8 gonads. Mas records 7 of them irregularly arranged in a zone at middle of subumbrella, and Haeckel's specimen was so poorly preserved that he does not record the character of the gonads. Color (?)

Haeckel's specimen came from the region of New Zealand, while Maas records one from the Malay Archipelago, where it was obtained in a vertical net hauled from a depth of 500 fathoms in 17.6' S. lat., 129°. 14.5^{\prime} E. long.

This medusa is distinguished by its oval gonads.

Pericolpa tetiralina Haeckel.

Pericolpa tetralina, Hafckri, 1880 , Syst. der Medusen, p. 640.
This medusa is probably identical with P. quadrigata, but both ends of the 8 gonads diverge from the 4 interradii, while in P. quadrigata only the outer ends diverge and the inner

CORONATA-PERICOLPA, PERIPHYLLA.
ends approach one another closely. The medusa is very briefly mentioned by Haeckel and appears to be immature, being only 20 mm . high and 16 mm . wide. Found off the south coast
of Australia. Described by Haeckel from a single preserved specimen.

Genus PERIPHYLLA Steenstrup, 1837.

 at Harvard College, vol. 37, P. 24.
Periphema, HaxckxL, 1881 , Deep-sea Meduse Challenger Exped., p. 84.
generic characters.
Periphyllidæ with 4 interradial rhopalia, 12 tentacles, 4 perradial and 8 adradial. i6 marginal lappets grouped into 4 pairs of rhopalar and 4 pairs of tentacular lappets. A deep annular furrow separates the dome-like apex of the exumbrella from marginal zone of bell. Between this ring-furrow and the lappets is a zone of 16 pedalia, 12 in the tentacular and 4 in the rhopalar radii, and these are separated one from another by 16 deep, radiating clefts which extend down the mid-axial lines of the lappets. There are 4 deep, interradial subgenital pits in the floor of the subumbrella, lined along their edges by rows of internal gastric cirri. The large central stomach extends peripherally outward into the subumbrella in the 4 perradil. Tadiating vessel in the radius of each tentacle and rhopalium, 16 in all. These vessels fork before reaching the tentacles of ropalia, and their diverging ends curve around the edges of the lappets and form a marginal ring-canal

The 4 interradial septa are bordered by lines of gastric cirri and there are 8 U -shaped adradial gonads, one on either side of each septum. The free ends of each gonad are directed inward toward the stomach, and their convexities point outward toward the bell-margin concretion.

The medusæ of Periphylla are deep-sea forms of very wide distribution. The so-called secies are not well separated, being based on the relative height and width of the bell and on slight color distinctions. The bell appears to become relatively flatter as growth proceeds, and therefore its proportions would seem to afford a poor criterion for specific distinctions. Both Vanhöffen, 1902, and Maas, 1904, recoğnize but 3 species as follows:
P. hyacirtthina with high, narrow bell, its height being to width as 44 to 23 . The lappet pouches are dark-brown, so that

P. dodecabostry yha with
from the outside.

I think it probable that there is but a single species of Periphylla (P. hyacinthina), and that P. dodecabostrycha and P. regina are only varieties or local races. It is impracticable to attempt to separate species upon slight differences of form or proportions in their bells especially when such characters are subject to constant changes due to growth or to state of contraction. Bigelow, 1909, who has studied many spec
at P. hyacinthina and P. dodecabostrycha are identical. Peripalma corona of Haeckel, 1880 (Sitzungsber. Jena. Gesell. für Med. und Naturw. Jahrg. I880, Feb. 20; Syst. der Medusen, p. 418), is probably a young Periphylla. Haeckel states that the genus is characterized by the absence of interradial pits or perradial concavitie without gastral filaments.

A single specimen was found by Haeckel at Algeciras in the Straits of Gibraltar. He states that owing to the general transparency of the specimen and to its smallness he is able to describe it only through reference to the larger species of Periphylla found by the Challenger expedition. He states that the bell is 30 mm . high, 20 mm . wide, helmet-shaped. The pedal zone nearly as wide as the lappet-zone. The 16 pedalia are of not quite equal size each to the 8 rhopalar lappets. i2 tentacles as long as the bell-height and one-third as wide as the lappets at their bases. Basal, central, and buccal stomachs of nearly equal length.
Color violet, bell more red, tentacles and throat-tube more blue, gonads dark-red.

Periphylla hyacinthina Steenstrup.

 Bicerow, H. B., 1909, Mem. Mus. Comp. Zool. at Harrard College, vol. 37, p. .6, plates I and 9 .

The following description applies to the typical P. hyacinthina
This so-called species is distinguished by its high, narrow bell, the ratio of height to width being usually about as 44 is to 23 . The lappet-pouches are so densely pigmented with dark purple-brown that the gonads can not be seen through them from the outside

Bell 80 mm . high and about 42 mm . wide, but it may be much flatter and wider (see fig. 343). The upper, or aboral, half of the exumbrella is dome-shaped or pynform with a smooth occupied by circular muscle-fibers. Below this constriction the exumbrella flares slightly outward, and in this region we may distinguish an upper pedal-zone and a lower lappetzone. The pedal-zone is divided by 16 deep, longitudinal furrows into the same number of projecting, wedge-like thickenings, the pedalia. The 4 interradial pedalia are smaller than the others and lie in the radii of the 4 marginal sense-organs; while the 12 perradial and adradial pedalia are situated in the radii of the tentacles.

There are 16 well-developed marginal lobes, arranged in 8 pairs. I6 deep longitudinal urrows lie in the mid-radial lines of the lappets and separate the 16 pedalia, so that a furrow extends about two-thirds the distance down the exumbrella surface of each marginal lappet. 12 tentacular clefts. Each sense-organ contains a proximal mass of dark-brown entodermal pigment and a distal concretion, which is protected by an aboral fold forming a niche for its protection.

The i2 tentacles are equally developed and are each a little longer than the bell-height. They are solid and are provided with well-developed, longitudinal muscle-fibers. In the cavity of the subumbrella 4 long, funnel-shaped, interradial pits extend inwardly along the sides of the central stomach nearly to the aboral apex, where their points do not quite touch. There is a well-developed zone of circular muscle-fibers in the subumbrella just above the bases of the tentacles and sense-organs. This zone is divided by 16 longitudinal selvages ing halves of each pair of adjacent lappets are connected by the circular muscles. Besides the circular muscles, 8 well-developed, longitudinal muscle-strands lie in the inner, or proximal, part of the subumbrella wall; 4 of these are perradial and 4 interradial. They are deltoid in shape, their broad bases extending out into the distal part of the subumbrella, to the upper part of the zone of circular muscle-fibers. There are $8 \cup$-shaped gonads which are on both ides of the 4 interradial septa, with their convexities directed outward; thus they appear to be adradial in position and alternate with the 8 longitudinal muscles of the inner part of the subumbrella.

The stomach extends from the inner apex of the subumbrella to about the level of bellmargin. Its cavity may be divided into 3 regions, which we may designate, respectively
as the basal, central, and buccal stomach. The central stomach is a 4 -sided prism, the side being interradial and the angles perradial in position. The lower or buccal part of the stomach hangs freely in the cavity of the bell, being joined to the subumbrella at 4 perradially situate of the buccal stomach, which extend downward to the mouth-opening. The central stomach is a wide cavity which communicates by 4 perradial openings with the gastrovascular spac of the subumbrella of the medusa. These 4 openings are narrow, elongate, longitudina clefts, and their edges are lined with numerous gastric cirri which project into the space of

the stomach. The basal stomach is a 4 -sided pyramid and 8 rows of gastric cirri extend up the 4 sides near the angles to the apex of the pyramid where they meet. These rows of cirri are continuous with those surrounding the 4 perradial side-openings of the central stomach by the 4 perradially situated ostia of the central stomach. These open into this wide annula cavity which occupies the mid-region of the subumbrella above the zone of circular muscles. Below these, however, it appears as a broad, simple, annular space, which extends outward
into the 16 marginal lappets. A partial septum extends, however, down the midline of each lappet, and the gastrovascular space forms a marginal ring-canal around these septa. Diverticula of the annular space also extend for a short distance into the bases of the tentacles, but the main entodermal cores of the tentacles are solid. A good idea of the structure of the gastrovascular cavity of the bell may be obtained from Vanhöffen's figure 3, taf. I, in "Ergeb. der Plankton Expedition," Bd. 2, K. d.

The inner surface of the subumbrella is purple, while the pedalia are copper-brown colored and the tentacles and lappets are of a milky-blue translucency. The gonads can not be seen through the densely pigmented bell-walls.

This deep-sea medusa is occasionally found upon the surface in the colder parts of the North Atlantic. It has been taken in the Bay of Biscay; at the Azores; off Cape Hatteras, coast of Greenland, but its true habitat is undoubtedly in and still more commonly off the Nearly all recent deep-sea expeditions record it, and the Valdivia found it in both the Atlantic and Indian Oceans. The best descriptions are those of Vanhöffen and Maas.
Haeckel states that the bell of this medusa may become 160 mm . high and 120 mm . wide, but later observers have not seen specimens of such great size

Periphylla hyacinthina forma dodecabostrycha.

Bell higher than wide in young, wider than high in well-grown medusa. Thus when the medusa is 50 mm . wide the bell is 55 mm . high; when 45 mm . wide it is 45 high ; and when 100 mm . wide it is 70 mm . high.
The gonads may usually be seen through the gelatinous walls of the bell, but not so clearly in old as in young specimens. Thus the bell is said to be lower, flatter, and less pointed than in P. hyacinthina, and the bell-walls are more transparent.

Widely distributed over the floor of the great oceans, and especially in tropical parts of the Pacific, west coast of Mexico, coast of Chile, Ocean, Malay Archipelago, Mediterranean, Guinea Stream off Atlantic coast of Africa.
It is probably only a variety of, or even only a growth-stage of, P. hyacinthina.

Periphylla hyacinthina forma regina

Periphylla regina, Hascxnit, 1880, Syst. der Medusen, P. 421 ;
 vol. 4, P. 85, plates $24,25 .-$ MAAs, 8897 , Mem. Museum.
Comp. Zool. at Harrard College, roi. 21 , pp. 29, 64 , taf. io,

188r, Chalienge
$18-23,40$ figs.

This appears to be merely a light violet or rusty-reddish variety of P. hyacinthina. Bell nearly I. 5 times as wide as high, but Haeckel
records a specimen fully as high as wide. According to him, the pedalia are rectangular an longer than wide, but according to Maas, 1897, they are nearly circular in outline. The tentacles are said to be short and thick, and the stomach very large and wide, but these points as well as the proportions of the bell, are probably affected largely by growth and contraction. Found on the bottom of the Pacific and Atlantic from the Antarctic regions to the tropics It is the largest form of Periphylla and may become 200 mm . wide.

Genus PERIPHYLLOPSIS Vanhöffen, 1000.

 Ifg. I, P. 27. MaAs, 1907; Ergeb. und F
Zool, at Harvard Coliege, vol. 37 p , P .27 .
The type species is Periphyllopsis braueri Vanhöffen, of the Indian Ocean; from a depth of $\mathrm{I}, 200$ fathoms.
generic characters
4 interradial rhopalia, 4×5 (20) tentacles, 4×6 (24) lappets.

Periphyllopsis braueri Vanhöffen.

Vanhöffen's single specimen was so imperfect that he could not venture to present a detailed description of it. Recently, however, Bigelow describes a more nearly perfect specimen

345.

Frc. 345 .-After Vanhafien, in V aldiviaia Expedition. Aboral view of bell.
Ftc. $346-$ With the wall of of the stomach torn away leaving only its base

from the collections of the Albatross, and the account here given is mainly derived from his description.

Beil flattened, 60 mm . wide and 25 mm . high, resembling an Atolla in shape. Central disk about 50 mm . wide; ring-furrow deep. 4 interradial rhopalia, $24(4 \times 6)$ ovate marginal appets, and $20(4 \times 5)$ tapering tentacles, about as long-as the bell-diameter. Thus the radial lappets and tentacles being greater. The ring-muscle of the subumbrella is very weak as in

Atorella. The peripheral canal-system resembles that of Periphylla. The central stomach opens into a wide ring-sinus by 4 perradial ostia separated by 4 interradial septa. The ringsinus is about 10 mm . broad and is at the zone of the gonads. On its outer side it gives off 24 broad, spoke-like radial-canals in the radii of the rhopalia and tentacles, and these canals are connected one with another by a festoon ring-canal at the margin, extending in loops around the lappet margins. There are 8 oval gonads, adradial in position and equidistant one from another. The mouth parts were lost in both Vanhöffen's and Bigelow's specimens, but there are about 80 to 100 simple gastric cirri arranged in a single linear row. There
radial ostia in the subumbrella. The entire entodermal system is chocolate-red.
The Valdivia specimen was dredged from between $\mathrm{r}, 200$ fathoms and the surface in the Indian Ocean between New Amsterdam and Cocos Islands, and the Albatross specimen which was studied, while yet alive, by Bigelow was obtained in the Humboldt current off the coast of Peru between 400 fathoms and the surface.

Genius (?) NAUPHANTOPSIS Fewkes, 1885

Vauphantopptis, Frwxrs, 885 , Report Commiss. Fish and Fisheries U. S. A. for 1883, P. 596; 1886, Report Commiss. Fish and

generic characters.
Coronatæ with 32 marginal lappets, 4 interradial sense-organs, and 28 tentacles. With an annular furrow and 32 radial ridges (or pedalia) upon the exumbrella in the radii of the tentacles and sense-organs.

Owing to the incompleteness of our knowledge of the only known species of this genus it must remain problematical.

Nauphantopsis diomedea Fewkes.
Nauphantop sis diomedee, Frwwxis, r885, Report Commiss. Fish and Fisheries U. S. A. for 1883 , P. 596; 1886, Report Commiss,

Fewkes gives an unsatisfactory account of this medusa owing to the poor prese of his material. We are uncertain whether there are 4 or 8 marginal sense-organs.

Disk quite flat, 70 mm . in diameter. Central part of exumbrella flat and surrounded by an annular furrow; diameter of this region about 35 mm . Centrifugally from the annular furrow there is a zone about 10 mm . wide consisting of 32 radial elevations separated by 32 deep radial furrows; these elevations lie in the radii of the tentacles and sense-organs and alternate with the lappets. Each elevated ridge is bifurcated at its outer end by a deep median cleft. The 32 lappets are long and rectangular with rounded outer edges. They are each or 28 tentacles. The sense-organs were not observed in the specimen studied by Fexkes Tentacles slender and flexible and about 80 mm in lenoth Subumbrella (P) Mouth ($?$) Gonads (?) Color (?)
A single specimen was dredged from a depth of 2,033 fathoms in N. lat. $38^{\circ} 30^{\prime}$, W. long. $69^{\circ} \cdot 8^{\prime}$.

Family PARAPHYLLINLDE Maas, 1903

fanily characters.

Medusce Coronatee with 4 perradial rhopalia and 4 or more tentacles
This family differs from the Periphyllidæ only in having the marginal sense-organs rradial instead of interradial.
There is one known genus among existing medusx, this being Paraphyllina; but his is very closely related, if not identical, with Paraphyllites, a fossil medusa of the lithoraphic slate of Kelheim
Maas records a Paraphyllina from the Malay Archipelago, and another specimen was taken by the Krupp yacht Puritan at a depth of 500 fathoms, near Capri, Bay of Naples.

Genus PARAPHYLLIVA Maas, 1903.
Paraphyllina,
p. 195 ,
The type species is Paraphyllina intermedia Maas, 1903; from the Malay Archipelago between 100 fathoms and the surface.

generic characters.

Coronatre with 12 tentacles, 4 perradial marginal sense-organs, and 16 lappets. The 12 tentacles are interradial and adradial with reference to the stomach and lips. There ar 4 pairs (8) of interradial gonads. The marginal sense-organs have a terminal lithocyst-sa nd a ventral bulb-like swelling, just beyond which is an eye with ectodermal lens and ecto dermal pigment

The short 4 -sided throat-tube and flat disk-like bell resemble the condition noted in Nausithoe, but in its 4 marginal sense-organs and 12 tentacles it recalls the condition seen in Periphylla, with the important difference that in Periphylla the sense-organs are interradial, whereas in Paraphyllina they are perradial in position.

Maas places this genus in a new family which he calls the Paraphyllinidæ. The characters Paraphyllites, Maas, 1906 (Neuen Jahrbüch. für Mineralogie, Geol. und Paläontol, genus p. 90,4 fign.). This fossil medusa differs from recent Paraphyllina only in that its 8 gonads are adradial and placed 45° apart, whereas in Paraphyllina they are grouped in pairs on both sides of the 4 interradil.

Paraphyllites distinctus is described by Maas from a well-preserved specimen. It is 15 mm . wide and has a well-developed coronal furrow, 16 pedalia, 4 perradial margina sense-organs, 12 tentacles, and 8 adradial gonads 45° apart. It is from the lithographic slat of Kelheim. The latest reference to this fossil is that of von Ammon, 1908, Geonostischen Jahrespeften, Jahrg. Ig, p. 170.

Campl Sci. Prince de Monaco, fasc. 28, p. 48 , foot-note. \& wide, without pointed apex. The coronal
Bell flatly rounded, 8 mm . high and 15 mm . wide, without pointed apex. The corona furrow around the exumbrella is deep and separates the smooth, central, flatly-rounded apex
of exumbrella from the marginal zone of lappets. Lappet-zone about as wide as radius of of exumbrella from the marginal zone of lappets. Lappet-zone about as wide as radius of
central disk of exumbrella. The i6 pedalia of the marginal zone are rectangular with rounded central disk of exumbrella. The 16 pedalia of the marginal zone are rectangular with rounded
angles and are separated one from another by deep radiating furrows. These pedalia are angles and are separated one from another by deep radiating furrows. These pedalia are
in the radii of the tentacles and sense-organs and alternate with the lappets. The 12 pedalia of the tentacles are of uniform width, while the 4 pedalia of the marginal sense-organs are only about half as wide as the former. The 16 marginal lappets are oval and bluntly pointed, and the 8 lappets flanking the 4 sense-organs are somewhat narrower than the others. The 12 tapering, hollow tentacles are all of equal length and are not quite as long as the diamete of the bell.

The 4 marginal sense-organs are each covered by a hood-like fold of the exumbrella. Each sense-club contains a small terminal sac-shaped entodermal concretion. On the ventra (subumbrella) side of the sense-club is a large ectodermal eye with a cup-like mass of pigment and a spherical lens. On the inner side of the eye and upon the ventral side of the sense-club is a bulb-lik the eye is larger.
The throat-tube is short and 4 -sided and the mouth is a simple cruciform opening. There pouches in the radii of the sense-organs and coronal ring-canal a put into communication one with another by means of a marginal ring sinus, as in Nausithoë.

The gonads resemble those of Palephyra and are intermediate in character between those of Periphylla and those of Nausithoe. They consist of 4 pairs of bean-shaped or egg shaped sacs. These 8 sacs project from the subumbrella floor on both sides of the 4 inter radii near the sides of the throat-tube and centripetal to the ring-muscle.

There is a well-developed ring of circular muscle-fibers in the subumbrella, beyond the gonads and inside of the insertions of the tentacles. This zone of ring-muscles appears broken in the mid-radir of the lappets, thus forming ib trapezoids in the radii of the sense-
organs and tentacles.. Radial-muscle strands extend outward in the tentacular radii and converge at the bases of the tentacles.

The medusa is colorless save for the pigment of the eyes in the marginal sense-organs and for 4 interradial masses of red-brown pigment in the central stomach, leaving a clear cruciform space between them.
Two specimens were taken by the Siboga in the Malay Archipelago, in vertical nets, from a depth of roo fathoms, at $6^{\circ} 2^{\prime} \mathrm{S}$. lat., $123^{\circ} 57 \cdot 7^{\prime}$ E. long.

Dr. Lobianco describes a similar medusa in the collection made by the Krupp yacht Puritan, from a depth of 500 fathoms, near Capri, Bay of Naples. He generously permitted Naples. It resembles Maas's specimens from the Malay Archipelago except that the gonads

(female) are more slender and their outer ends somewhat longer than in the Malayan specimens. There are 4 deep interradial, crescentic pits in the floor of the subumbrella between mens. There are 4 deep interradial, crescentic pits in the floor of the subumbrella between
the gonads and the gastric cirri. The medusa was 15 mm . wide and in all respects (save the gonads and the gastric cirri. The medusa was 15 mm . wide and in all respects (save
in the minor details mentioned above) it appears to be identical with the East Indian medusa. A figure of Dr. Lobianco's medusa drawn by me from his specimen is presented in fig. 347.

Family EPHYROPSIDEE Claus, 1883 .

 Mus. Comp. Zool. at Harrard College, voi. 37, pp. 2I, 33.
phyride + Linergidd, Hackrt, 8880 , Syst. der Medusen, pp. 476 , 490 .
family characters.
Coronatæ with 8 rhopalia (4 perradial and 4 interradial). 8 or more tentacles and 16 or more lappets. Mouth surrounded by 4 short, simple lips. 4 perradial ostia connect the central stomach with a wide ring-sinus. Peripherally this ring-sinus of the subumbrella gives rise to

6 radiating pouches in the radii of the sense-organs and tentacles; these pouches are separated ne from another by 16 septa in the radii of the lappets. These septa may be complete o incomplete; and when incomplete there is a communication between adjacent pouches at the bell-margin forming a peripheral ring-canal.

The Ephyropsidæ are creatures of the open sea and are very widely distributed, but are especially abundant in the tropics. In the case of Nausithoe the scyphostoma larva bears a superficial resemblance to a branching hydroid, and it infests sponges. The ephyra s produced by strobilization.

The genera of the Ephyropsidx are as follows:
Palephyra Hatcrix, 1880 (sens. ampl. $)=$ Ephyra + Palephyra + Zonephyra Haeckel. 8 adradial tentacles, 6 lappets,

gonads. No subumbrella saccules.

Genus PALEPHYRA Haeckel, 1880

 Expedition, Bd. 10, Zool. 2, P. 3 .
The type species is Palephyra antigua Haeckel, from the Red Sea.

> generic characters.

Coronatæ, with 8 adradial tentacles, 8 (4 perradial and 4 interradial) marginal senseorgans, 16 lappets, and 4 interradial gonads.

This genus is related to Nausithoë, but is more prim itive in that there are but 4 interradial instead of 8 adradial genital organs as in Nausithoë. Indeed, in Nausitho itself the gonads begin to develop in the 4 interradii, bu later Haeckel distinguished three genera of
8 tentacles, 8 sense-organs, 6 lappets and meduse with gonads: (I) Ephyra, without lappet-pouches; (2) Pale phyra, with 8 cleft lappet-pouches in the ocular radii (3) Zone phyra, with 16 cleft lappet-pouches in the rho palar and tentacular radii. Haeckel, however, cut no sections and his ideas of the structure of the gastric cavity are probably erroneous. His Ephyra is apparently only an immature stage of Palephyra, which is in turn identical with Zonephyra.
FiG. 348.-"Ephyra promear.". After
Haeckel, in Das Syst. der Medusen. identical with Zonephyra.
"Zonephyra corona" Agassiz and Mayer, 1902 (2

Palephyra antiqua Haeckel.

Bell 20 mm . wide, 8 mm . high. Coronal furrow and pedalia (?), 8 adradial tentacles about half as long as bell-radius. 8 sense-organs; 16 spatula-shaped, sharply pointed lappets half as long as bell-radius. A long 4 -sided œesophagus with folded, recurved lips. 4 inter 6 to 8 slender fastric Tropical Indian Ocean near Madagascar

Haeckel describes that which I take to be the young of this medusa as Ephyra (Archephyra) prometor from the coast of Australia. It is only 8 mm . wide and has 4 simple, interradial,
crescent-shaped gonads, each with only one gastric filament. His Palephyra primigenio appears to be the half-grown medusa. There are only 2 gastric cirri in each interradius, and the gonads and tentacles are said to be light-reddish, nearly colorless. It comes from the Red. Sea, near Tur.

Palephyra pelagica.
$Z_{\text {onephyyra zonaria (young medusa }), \text { Hascrexi, } 1880, \text { Syst. }}$

Bell 12 mm . wide, 2 mm . high, with a coronal furrow. Mouth-tube wide and a coronal furrow. Mouth-tube wide and
short, hardly one-third as long as bellshort, hardy one-third as long as bell-
diameter (contracted ?). 16 spatulashaped, pointed lappets, half as long as bell-radius. 8 adradial tentacles not quite half as long as bell-radius. 4 half-moon shaped interradial gonads with ends of crescent pointing outward. Each gonad consists of 3 swellings; the middle par being hardly half as large as the two latera
ones. ro to 12 short, gastric cirri in each ones. Io to I2 short, gastric cirri in each
interradius. Color (?) Coast of Japan. Haeckel describes that which may be a young stage of this medusa under the a young stage of this medusa under the
name of Zonephyra zonaria. It is only 8 mm . wide. The mouth tube and tentacles are longer than in P. pelagica, but this may be due to conditions of contraction. each gonad are all of the same size. Found off the coast of China. Haeckel's Zonephyra described above in having each gonad composed of 2 swollen regions instead of 3 as in his

Z. pelagica. There are also 4 lanceolate, complexly folded lips. The medusa is only io mm . wide and is probably an immature stage.

Palephyra indica Vanhöffen.

Bell 12 to 16 mm . wide. 8 adradial tentacles, 8 marginal sense-organs, 16 marginal appets. 4 large, bean-shaped interradial gonads wider than the spaces between them. About 80 simple gastric filaments. Bell white, with faint brown, radial punctations in the radii of the sense-organs and axial lines of the lappets. Stomach brown. Gulf of Aden from a depth of about 500 fathoms.

Vanhöffen presents a beautiful figure of this medusa, drawn from life.

Genus NAUSITHOË K̈̈lliker, 1853

cyppostoma larva:

The type species is N. punctata of the Mediterranean, Atlantic, Pacific, Indian, and Arctic Oceans.

generic characters.

Ephyropsidæ with 8 (4 perradial and 4 interradial) marginal sense-organs and 8 adradial entacles. There are 16 marginal lappets and 8 separate adradial gonads, the gonads isolated, tentacles. There are I6 marginal lappets and 8 separate adradial gonads, the gonads isolated not grouped in pairs. The central stomach communicates with a wide ring-sinus in the bell ise to the entodermal gastric cirri. Peripherally, the ring-sinus gives forth I6 simple, unrami fied pouches in the radii of the sense-organs and tentacles. The partitions between these pouches are not complete, for there is a marginal ring-canal. No saccules on the subumbrella.

We may possibly distinguish the following "species" of Nausithoë:
N. punctata, with finely punctured, central disk without radiating furrows, large gonads, gastral flaments not grouped
into clusters. All oreans.
N. clausil, with smoth central disk, small gonads. Caroline Islands, Paciinc.
N. challen geri, central disk with radiating furrows. Tristan d? Acunha, South

N. rubra, red color. Pitted central disk. Simple fe gastral flaments which are not grouped into clusters. Indian and

It is apparent that there are only 4 well-marked forms of Nausithöe: (1) the punctata ubra, picta group with pitted central lens which lacks radiating furrows, and with gastric filaments arising singly, not in clusters; (2) N. clausi with smooth central lens; (3) N albatrossi with gastric fiaments grouped in clusters; (4) N. challengeri with radial furrows upon the central lens.
The scyphostoma larva of Nausithoë infests sponges and bears a superficial resemblance to a branching hydroid. See N. punctata. The medusa of Nausithoë is peculiar in having clusters of small crystals scattered at intervals within the ectoderm of its umbrella.

Nausithoë punctata Kölliker

Plate 60, figs. 4 and 5 .

 ,

 Naustho punctata, auxphanta polarisis, Frwwss, 8888 , Report Lady Franklin Bay Expedition, P . 40 , plate I , figs. $\mathrm{I}, 2$, Annals and Mag. Nat. Hist,

Jahry. $13, \mathrm{P} .687$.
Spongicola fstularis, Schuze, F. Sckizz, F. E., 1877 , Archiv. für Milikroscop. Anat., Bd. 13, p. 7955 taf. $45-47$ (larral stage).

vol. 10, part 2, p. 7 (Russian).
Adult medusa.-The umbrella is discoidal, flatter than a hemisphere, quite thick, and to 15 mm . wide. Central disk of exumbrella thick, raised, and lenticular with a finely 9 to 15 mm . Wide. Central disk of exumbrella the punctate surface, not quite half as wide as the
medusa itself and separated from the peripheral medusa itself and separated from the peripheral zone of pedalia is composed of 16 radial thicken-

Frc. 352 - Naussithoe e punctata, from life, by the author, at Naples Zoological
Frc. 353 .- "Nausicaa phacuum," after. Haeckel, in Das Syst. der Medusen.
radii of the sense-organs. They thus alternate in position with the 16 marginal lappets and are separated by deep radial clefts in the mid-axial radii of the lappets (fig. 5 , plate 60). The 8 tentacles are adradial and arise from deep clefts between the lappets. The bases of these tentacles are set in thick, socket-like pedalia and arise from the subumbrella side of the bell. The tentacles are about three-fourths as long as bell-diameter. The entodermal core of each tentacle is solid and composed of highly vacuolated cells. There are 8 marginal senseorgans, 4 radial and 4 interradial; these sense-organs are set at the bottom of 8 clefts between the lappets, but the clefts of the sense-organs are not quite as deep as those of the tentacles. The Hertwigs (1878 , fig. 2, plate 9) and Claus (1883 , fig. 47 , plate 7) have shown that each mal ectodermal eye provided with lens, retina, and nerve-fbers. The 16 marginal lappets are long, flexible, and spatula-shaped. The mouth is a simple, cruciform opening at center of
subumbrella; the 4 lips are without prominent oral appendages or palps. The central stomach is connected with a wide annular sinus in the disk by means of 4 wide, perradial ostia alternating with which there are 4 short interradial septa (see Claus, 1883 , p. 27, taf. 7 , fig. 48) The broad ing-inus is interrupted near the bell-margin by 16 septa in the radii of the mid ring-canal. Thus the 16 peripheral stomach-pouches are in the radii of the sense-organs and tentacles, and are joined by the marginal ring-canal in the axial line of each lappet.

Four groups of simple, unbranched, gastric cirri are upon the interradial septa of the central stomach and project centripetally inward into the central stomach; altogether there are about 28 gastric cirri, about 7 in each group. The 8 adradial gonads occur in the 8 tentacular radii and are upon the floor of the subumbrella in the zone of the wide, inner ring-列 muscle-fibers is on the subumbrella between, and centrifugal to, the gonads. Centripetal muscle-fibers is on the subumbrella between, and centrifugal to, the gonads. Centripetal ginal lappets; also, 8 poorly developed strands of radiating muscles extend outward in radial and interradial positions from the base of the oesophagus to the zone of circular muscles.

The color of this medusa is quite variable. The gelatinous substance of the bell is usually translucent-milky, greenish, or light brownish. The gonads are brownish or red or, in the case of the males, bright yellow. Rosin-colored spots in the ectoderm of the exumbrella, especiall upon the lappets, are due to clusters of small crystals (see Claus, 1883, fig. 44, taf. 6).
A young ephyra of this species was ound by us near Flamingo Key, Bahama Islands,

 and only 4 gastric cirri. A slightly older ephyra has been figured by Claus, 1883 , fig. 48 , taf. 7 .

This medusa is a surface form, and is common in the Med iterranean, Atlantic, Pacific, and Indian Oceans, and in all trop ical or warm seas. Nausithoë polaris (Nauphanta polaris Fewkes) from the Arctic Ocean, appears to be identical with N. punctata, and if this be true Vanhöffen is right in stating that Nausithoë punctata is found in all oceans. It is abundan in summer at Tortugas, Florida, and in the Bahamas, but has of the Carolinas. Vanhöffen, 100 , describes a specimen 12 mm . wide from N .

Hamann, 1883 , studied the development of the ephyra of this species and finds that the gonads first appear as 4 inter radial entodermal swellings in the subumbrelia wall of the stomach, at a time when the ephyra has but one gastral filament in each interradius. Late the 4 original gonads divide and migrate so as to become 8 in the adradii of the subumbrella wall of the stomach. The genital products originate in the entoderm and migrate into a gelat nous space between two Accordin
According to Metschnikoff, I886, who has studied the early development of Nausitho marginata" (which is apparently identical with N. punctata) the egg is citron-yellow, 0.23 unequal, the cells of the vegetative pole being largest. A wide, central, cleavage cavity is formed and the gastrula results from invagination at the hinder end of the larva. The blastopor then closes over and the entoderm is entirely inclosed by a layer of ciliated ectoderm, an the free-swimming planula is thus formed.

The remarkable scyphostoma larva of N ausithoë punctata bears a striking superficial resemblance to a hydroid and it lives commensal within sponges such as Suberites, $M y x i l l a$,
Reneira, Esperia, etc. It is especially abundant at Trieste and Naples, This hydroid-like Reneira, Esperia, etc. It is especially abundant at Trieste and Naples. This hydroid-like
larva forms a branching tree-like growth within the body of the sponge, the polyp-mouths arva forms a branching tree-like growth within the body of the sponge, the polyp-mouth
and their tentacles projecting out of the oscula of the sponge. The branching, tree-like stock of the larva is covered with an irregularly annulated, chitinous perisarc, which terminates at a short distance below the zone of tentacles of each polypite. The mouth of the polypite
is at the extremity of a short, blunt-conical hypostome, which is surrounded by an annulus of about 40 solid filiform tentacles. 4 longitudinal partitions lined by entoderm extend throughout the cavity of the stem. These do not meet in the center, but form only partial There is no marginal ring-canal dermal) circular muscles. The polypites are translucent-white.

Lobianco and Paul Mayer, 1800 found that ephyre of N
from this larva. The young ephyra has only 4 gastric filaments and no tentacles, Kowal evski, 1873, also observed the giving off of the ephyræ, but did not determine that they were Nausithoë.

It is not surprising that this peculiar larva should have received various names: Allman calls it Stephanoscyphus mirabilis; F. E. Schulze describes it in detail under the name Spong icola fistularis; but its true nature was discovered by Lobianco and Paul Mayer, 1890 .

Haeckel's Nausicaa phaacum from Corfu, Mediterranean, may be identical with N in each interradius, with a wide separation between the outwardly directed horns of each
 crescent. It may have been describe from an abnormal or young specime of N. punctata (See Haeckel, 1880 , Sit zungsber. Jena. Gesell. für Med. und Natur., Jahrg. 1880, Feb. 20.)

Nausithoë clausi Vanhöffen.

$1,2$.
Disk about 9 mm . wide; centra ens-shaped dome of exumbrella flat, mooth, unpitted, and without radial fur marginal pedalia. Medusa 3 times wide as high. I6 very blunt, 3 -cornered marginal lappets, three times as wide a ong and hardly one-ninth as long a bell-radius. 8 adradial tentacles with well-developed, conical bases. Tentacles as long as bell-radius. 8 marginal sense Fr. 355 --Nausshoe rubra, atter vanhoften, in \quad as long as bell-radius. 8 marginal sense organs alternating with tentacles. 8 gonads in the tentacular radii, very small, spherical,
only I. 3 as wide as the pedalia. . Ring-muscle of subumbrella one-third as wide as bell only I. 3 as wide as the pedalia. Ring-muscle of subumbrella one-third as wide as bell-
radius. Numerous, small, simple gastric cirri arising in a linear row in each interradius. Color (?)
Pacific Ocean east of the Caroline Islands. A single specimen appears to be N. punctata with poorly developed marginal-lappets and small gonads.

Nausithoë challengeri Vanhöffen.

Nauphanta challen geri, Haccrex, i880, Syst. der Medusen, P. 487; 188r, Report Deep-sea Medusx, Challenger Exped., Zool,

Bell 12 mm . wide. Central lens of exumbrella separated by a deep annular furrow from zone of pedalia. Somewhat less in diameter than bell-radius, its margin cleft by 16 radiating furrows which do not extend to center of exumbrella. Marginal zone of pedalia well developed the 8 ocular being narrower than the 8 tentacular. Tapering tentacles somewhat longer than bell-radius. The 8 large gonads are twice as long as wide and are elongated outwardly gastric cirri which arise at equal spaces in a single row in each cluster and are not grouped into brushes as in N. albatrossi. Each cluster has about 24 cirri.

Found near the island of Tristan d'Acunha, South Atlantic, at a depth of I,425 fathoms, an open net, on March 16, 1876.

Nausithoë albatrossii Vanhöffen

Disk 35 to 40 mm . wide, 35 mm . high. The marginal lappets are narrow and elongate with nearly parallel sides and rounded ends; not heart-shaped, as in Nausithoe challengeri . vettoris pissani $(=N$. punctata $)$. Central isk lengeri or N. vettoris pisani. 8 gonads, elongate, oval, bladder-like organs. The gastric filaments arise in a row in each interradius, each row being composed of about 4 clusters, of filaments each. All 5 filaments of each cluster arise close together, and with wide, free intervals between the groups. This species is remarkable for its large size

Gulf of Panama, Pacific coast of Central America.

Nausithoë rubra Vanhöffen.

Bell 15 mm . in diameter. With large pits over the exumbrella surface of the central disk. Simple gastral filaments arise separately, not in clusters. 8 large gonads. i6 short, pointed, marginal lappets. 8 tentacles longer than the bell-radius. Tentacles and bell redpurple, stomach blue. Indian and South Atlantic Oceans. It appears to be distinguished from N. picta by its deep color and large pits over the exumbrelia surface of the central disk; moreover, according to Bigelow, Ig09, the rhopalia in N. rubra lack ocelli, while there is a ventral ocellus in N. punctata. The septal nodes of N. rubra are broadly triangular and the perradial gastric ostia are narrow. The marginal canal-system is as in N. punctata.

Nausithoë "picta" Agassiz and Mayer = N. punctata (?)
Nausithoe picta, Acasssiz, A., and Mayre, yooz, Mem. Museum Comparative Zool. at Harrard College, vol. 26, p. 154, plate 7,

Bell 15 to 22 mm . wide, somewhat flatter than a hemisphere. Coronal furrow of exumbrella well-developed, central disk of exumbrella smooth-edged. 16 marginal lappets, wide and pointed. 8 tapering adradial tentacles, with wide bases, are somewhat shorter than bell-radius. 8 marginal sense-organs, radial and interradial in position with reference to the ips. 8 large, egg-shaped or oval gonads project from middle zone of subumbrella in the entacular radii. Mouth cruciform, the lips being in the radii of 4 of the marginal senseorgans. 4 clusters of gastric cirri in the interradii, each cluster consisting of about I2 cirri. of the 8 sense-organs are dark-brown.

This medusa was found by the A atros in the Maas, 1903, describes these specimens and fortunately corrects certain serious mistakes in the description written by me in the account published under the names of Agassiz and Mayer. am inclined to regard this medusa as merely a large, highly-colored variety of N ausithoë punctata.

Genus LINUCHE Eschscholtz, I829.

The type species is Linuche unguiculata Eschscholtz, 1829, of the West Indian region, ropical Atlantic.
generic characters
Ephyropsidæ with 8 (4 perradial, 4 interradial) rhopalia. 8 adradial tentacles. 16 lappets. 8 gonads grouped in 4 pairs close to the 4 perradir. With zones of hernia-like sacs upon the floor of the subumbrella. The 16 peripheral stomach-pouches break up into branches in the lappets. A marginal ring-sinus may or may not be present

There are, I believe, but two species, L. unguiculata of the tropical Atlantic and L. aquila of the Pacific and Indian Oceans. These are closely related, but in the Atlantic form there is no marginal ring-canal, whereas this is present in the Pacific species; moreover, the subumbrella warts of the Pacific form are arranged in 2 rows and in the Atlantic medusa in 3 rows.

Linuche unguiculata Eschscholtz
Plate 59, ifgs. I to ro.
Medusa un guiculata, Scywartz, 1788 , Neue Abbandl. Schwed. Acad. Deutsche Uebers., 1789 , P. 195, taf. 6, fig. r. $\mathrm{-}$ LinNE

 siculatat, Hazcxers, Es,

Bell about 13 mm . high and 16 mm . wide. Lenticular apex flat and horizontal, separated
. from the vertical sides by a distinct but shallow annular furrow. Occasionally a few irregularly arranged, radiating clefts are found in the margin of the lenticular apex of the bell, but this is usually plain. Sides of bell composed of 16 vertical pedalia, similar each to each, and separated one from another by i6 clefts in the radii of the mid-axial lines of the lappets.
Thus the pedalia are in the radii of the tentacles and rhopalia and alternate with the lappets (plate 59, fig. 2). The 16 lapp
The 16 lappets are bluntly oval with rounded edges and are all inclined inward at an
gle such that when one observes the medusa by looking down upon the aboral end of the bell the animal rotates with the hands of the watch as it swims through the water, upon each contraction of its margin. The lappets being inclined as are the vanes of a wind-mill cause this peculiar spinning on its axis as the medusa progresses rapidly along. This was discovered by Prof. E. G. Conklin in 1905. 8 small, simple, marginal sense-organs, perradial and interradial in position, arise from clefts between the lappets and are not protected by covering scales. The entoderm of each rhopalium contains a spherical mass of concretions. No about I .5 times as long as lappets.

The 8 (4 double) gonads form 4 cleft crescents on both sides of the perradial lines of the subumbrella, the cleft being in the perradius itself and the horns of the crescents extending outward toward the margin of the bell. These gonads begin to develop as 8 separate sacs diverging outwardly on either side of the 4 perradii when the ephyra is about 5 mm . in diameter. The subumbrella sacs are not male gonads as was conjectured by Haeckel, and the medusa is not hermaphroditic, the sexes being separate.

The proboscis is urn-shaped, 4 -sided, and with 4 slightly recurved lips with their perradial angles truncated so as to present a nearly octangular appearance when viewed upon looking into the bell-cavity. The mouth does not extend to level of bell-margin, othis asually at about two-thirds the distance down from the inner apex of the bell-cavity. There are 4 crescentic interradial rows of simple unbranched gastric cirri, about 15 to 20 in each row at the
interradial septal nodes. Beyond these, and connected with the central stomach by 4 perradial ostia, is the broad bell-sinus, which in turn gives rise to 16 radiating pouches in the radii of the sense-organs and tentacles. The edges of these pouches break up into numerous, ragged-edged branches in the lappets, but I am unable to find any marginal ring-canal, for although I have often injected the lappet-pouches with air, carmine, or other stains, each pouch is evidently completely separated from the two adjacent to it. This appears the more remarkable from the fact that Maas has found a marginal ring-canal in the Pacific species; a fact which I am enabled to confirm in specimens from the Philippine Islands, and Claus, Van low have demonstrated that such a structure exists in other Ephyropsidx.
Projecting from the floor of the subumbrella into the bell-cavity are 48 hollow sac-like
in 3 zones (text-fig. 356A). The 2 inner rows are each composed of 8 large perradial and interradial saccules which lie between the gonads, the 8 innermost saccules being partiall cleft and bean-shaped (plate 59, fig. 7); a third row of 32 smaller saccules, 2 for each lappet pouch, lies at the level of the outer ends of the horns of the crescentic gonads. In the sub umbrella we find a broad, unitary, marginal area of ring-muscles, and centripetal to this ar more or less isolated strands of radial muscle-fibers.

The entoderm of the gonads, of the wart-like saccules, and of numerous, separated more or less spots extend longitudinally down the inner surface of the is

Vast numbers of the ephyræ of this medusa appear among the Bah
West Indian region in February and March, and become mature from April until arly usually disappearing at or about the middle of May. I have seen hundreds of such swarms, all composed of but one species. I have never seen any of the so-called "species" described by Haeckel from the West Indian region, and it appears to me that he has constituted specie out of preserved material displaying various well-known characteristics of abnormal contraction and in various stages of growth. In fact I have seen Haeckel's "species" only in medusx which I have myself preserved. They appear not to exist except in alcohol.
In the Bahama-Florida region in spring these meduse form swarms, miles in extent progress through the water

Conklin, 1908, has studi
When mature the medusx rise in vast habits and early development of Linuche unguiculata. fertilized at $8 \mathrm{p} . \mathrm{m}$. The female gonads are slaty or blue-gray in color while those of the mal are brown. When the gonads have been emptied the medusæ sink down to the bottom and die. Each egg is closely invested by a very thim transparent membrane which persists to the gastrula stage. The eggs are laid near the surface but gradually sink downward. The newly laid egg is 0.24 mm . in diameter. It consists of a peripheral layer of clear protoplasm, an intermediate layer of densely packed yolk spherules, and a central sphere composed appar gastrula, and gives rise to the cilia of the ectoderm. The intermediate "shell" of closel crowded yolk spherules constitutes the principal part of all of the cells of the gastrula and blastula, while the central mass of dissolved yolk is poured into the cleavage cavity and probably serves as a source of nourishment for the surrounding cells.

Two polar bodies are formed. The first two cleavages are meridional and cut downward from the animal (polar body) pole to the vegetative pole, and the third cleavage is equatorial Up to the 64 -cell state the divisions are wholly mitotic. Cleavage is total and practically equal. When the embryo consists of about $\mathrm{I}, 000$ cells protoplasmic processes appear over the entire periphery, and these push off the egg membrane and form the vibratile cilia. Gastrulation embryo; but sometimes there is a inipolar ingression of cells at the vegetative pole and no invagination. The blastopore closes so that the entoderm becomes entirely incased within the ectoderm, and the larva elongates and becomes a free-swimming planula.

Isolated blastomeres, at least as late as the 4 -cell stage, may give rise to apparently normal free-swimming larve.

The center of the egg is more nearly fluid than the peripheral layers, and this fact favors the cutting inward of the cleavage furrow from the animal pole to the vegetative during the first two divisions, and the unilateral constriction in the third (equatorial) division.
When the ephyra is 1.5 mm . in diameter, it has 16 lappets and 8 sense-organs, but neither tentacles nor gonads. 4 gastric cirri, one in each interradial side of stomach. Disk very fla gonads appear when the medusa is about 5 mm . wide. The polygonal areas of pigmente digestive cells then develop in an inner ring of i6 large areas centrifugal to the gonads, and still farther out an outer annulus of 32 areas. There are also irregularly shaped and arranged areas of brown cells in the lappets (plate 59, fig. 5). The subumbrella saccules do not develop until later.

Linuche aquila.

Plate 59 , fig. ir.
 (?) Linerges draco, HAscKRL, , loc. cit, P. . 496 .
Linerges draco (young medusa), Mass, 1903 , \qquad
This form is widely distributed over the tropical Pacific and is closely related to the tropical Atlantic L. unguiculata, with which it is identical in form and dimensions, being about I 3 mm . high and I 6 mm . wide. It has 48 wart-like protuberances upon the subumbrella L. aquila alternate with the gonads and 8 arise from the sides of the subumbrella sacs in Thus in the Pacific medusa we have two zones of protuberances, an inner zone of 16 large sacs, and an outer of 32 small subumbrella saccules. The 16 large sacs lie in the mid-regions of the gonads, while the 32 small saccules lie at the zone of the outer ends of the gonads. The areas of brown cells are developed only centrifugal to the zone of gonads in the Atlantic, while they occur between the gonads as well as beyond them in the Pacific medusa. A marginal ring-canal is present.

Vast swarms of these medusæ are found among the atolls of the Fiji and Paumotos Islands, and they extend westward to the coast of Africa. They abound in the spring months, in Fiji in December and at Singapore in April. I have studied a large collection of these medusx taken in the Philippine Islands at Mactau, near Sibu, on April 6, Igo8, by the U. S.
Bureau of Fisheries steamer Albatross All were mern Bureau of Fisheries steamer Albatross. All were mature.
There appear to be no valid distinctions in Haeckel's descriptions between L. aquila preserved specimens. Haeckel's Linantha lunulata (Syst der Mect to find in two contracted preserved specimens. Haeckel's Linantha lunulata (Syst. der Medusen, p. 494, taf. 29, fign.
I to 3) is possibly the young of L. aquila. It is said to have 4 interradial gonads, but in all known species of Linuche the gonads are more nearly perradial than interradial. It is evidently an immature form, being only to mm . wide, and has no subumbrella saccules; indeed, the figure itself shows its ephyra-like condition. It comes from the Galapagos Islands, off the Pacific coast of South America.

Family COLLASPIDE Haeckel, 1880 .

family characters.

Coronatæ with numerous (more than 8) marginal sense-organs which alternate with an equal number of tentacles. Marginal lappets twice as numerous as the tentacles.

Atolla is the only known genus.
Genus ATOLLA Haeckel, 1880, sensu Fewkes.

generic characters.

Coronatæ with numerous (9 or more) tentacles and equally numerous marginal sensergans. Twice as many marginal lappets as sense-organs. 8 adradial gonads and 4 interradial subgenital ostia. 4 lips. The tentacles and marginal sense-organs alternate egan are the insertions of the pedalia of the sense-organs.

The type species is wyvillei Haeckel.
Haeckel distinguished "Atolla" with 8 gonads grouped in 4 pairs and "Collaspis" with 8 separate, equally spaced gonads. As was first shown by Fewkes, r886, both of these conditions may exist upon one and the same medusa, some of the gonads being paired, others lent to Atolla.

The meduse of this genus are deep-sea forms and are inhabitants of all oceans, and arge numbers of them have been taken in open nets dragged at 350 to 2,500 fathoms. A few specimens have also been found upon the surface, but this is unusual. They are often brought up from depths of about 100 fathoms where the ocean is more than 2,000 fathoms deep.
In the sculpturing of the exumbrella, the structure of the tentacles, the general features of the anatomy of the gastrovascular system, and in the arrangement of the muscular system, in the floor of the subumbrella and in the flat, discoidal shape of the bell. The central stomachcavity is thus less complex, but not essentially different from that of Periphylla.

The details of the structure of gastrovascular system, sense-organs, gonads, etc., are given in the description of A. bairdiz.

Ephyroides rotaformis Fewkes, I 886 (Report U. S. Fish Commission for 1884, p. 949), may be closely related to Atolla. The 16 to 32, or more, pedalia are separated by wide interval instead of by narrow clefts, as in Atolla. Several specimens are mentioned by Fewkes as having been dredged from depths of 389 to 1,555 fathoms in the Gulf. Stream off the of the United States, but were not sufficiently well preserved to admit of description.
Vanhöffen, 1902, discovered in Atolla, a system of excretory openings which consists of
pores, 2 in each principal radius near the perradial angles of the stomach and centripetal 8 pores, 2 in each principal radius near the perradial ang connection. The position of these to the zone of the gonads, wal spots upon the floor of the subumbrella. The closely allied Ephyropside have numerous openings on the subumbrella at the place of connection between the tentacular canals and the ring-canal, but these have not been observed in Atolla.

Vanhöffen (IgO2), Maas (I904,) and Bigelow (IgO9), have given the best detailed descrip tion of the genus Atolla. The development is unknown.

Bigelow concludes that the sculpturing of the central lens of the exumbrella, the presence or absence of warts, etc., constitute the best criteria for the separation of species. The furrows of the central lens are, when present, always one less in number than the tentacles. Bigelow doubts the existence of A. alexandri and finds slight furrows on the central disk of the specimens which I described from Hawaii as A. alexandri. He therefore merges " A. alexandri", with
A. wyvillei.

A study of the large number of specimens of Atolla in the National Museum at Washington convinces me that A. baird $n l$ and A. wyvillei are very closely related if not mere individual
variations of one and the same species. In some specimens the annular ridge in the outer side of the ring-furrow is so narrow and indistinctly separated from the marginal zone of pedalia that one hesitates to decide whether to consider it to be present or absent. Moreover the margin of the central lens in all Atollas is apt to be more or less notched with faint sinuosities in its outline, and thus A. bairdii and A. wyville may be only varieties of one and the same species 8 so-called species of A tolla have been described, but I believe only three can be distinuished upon non-intergrading characters. These are:
A. bairdii Fewkes, with an annular ridge within the ring-furrow between the central lens and
the marginal zone of pedalia. Exumbrella surface of lappets smooth. A. valdivio and A. gigantea are probably identical with A. bairdii.
en has the exumbrella surface of lappets besprinkled with papillæ, very wide
A. wyvillei Haeckel, with margin of central lens notched with radial furrows; no annular ridge
in the ring-furrow. This is probably identical with A. achillis and A. verrillii
A synopsis of the distinctive characters of the forms is presented in the following table:

	A. bairdii:*	A. valdivie.*	A. gigantea.*	A. chuni.	$\begin{aligned} & \text { A. wyvillei= } \\ & \text { A. achillis. } \end{aligned}$	A. verilibi. \dagger
Wiidth of bell in mm .	12 to. 72	${ }_{3}{ }^{2}$	150	27 to 50	58 to 66	95
Width of central lens.	5 to 40 , usually more than half as wide as medusa.	Half as wide as medusa.	70	22.5 to 3^{8}	About 29 to 33.	About 50.
Annular ridge on the outer side of the ring furrow.	Smooth with even margin.	As in A. bairdii.	Notched in outer margin. Contracted?	Hidden within the ring-furrow	Hidden within the ring-furrow	Hidden within ring-furrow.
Radical furrows of central lens.	None; but the margin is indented with 17 to 23 notches.	As in A. bairdii.	As in A. bairdii.	Notched with 23 shallow radial shallows.	Notched with Is to 3 I radial clefts or grooves	Notched with I3 to 27 shallow radial clefts.
Number of tentacles.	18 to 24	20 to 29		$24 \pm$	16 to 32	14 to 28
Exumbrella surface of lappet zone.	Smooth.	Smooth.	Smooth.	Covered with papillæ.	Smooth.	Smooth.
Where found.	North Atlantic.	Indian Ocean.	Gulf of Panama Panama.	Cape of Good Hope, Africa.	Antarctic. Tropical Pacific	Atlantic, $\mathrm{In}_{\mathrm{n}} \mathrm{ian}$, and Pacific Oceans.

To a great extent the conditions exhibited by these so-called species of Atolla intergrade. For example we can draw no sharp line of distinction throughout the series between a smooth, central lens with faint notches in its margin and as is seen in A. bairdii, and a lens deeply furrowed by radiating valleys as in A. wyvillei. Similarly the wide, annular ridge, which projects prominently on the outer side of the ring-furrow in A. bairdii grades insensibly to the condition seen in A. wyville e wherein the ridge is so narrow that it is quite hidden by the ringfurrow which over-arches it. With the exception of A. chuni, which stands apart, all of the
others may be mere local races or varieties of one variable species, A wyvillei.

Atolla bairdii, Fwwrss, J. W., 1886 , Report Commiss. Fish and Fisheries U. S. A. for 1884, P. 996 , plates I 1 .3, 4 figs.; 1888 ,

The medusa is 30 to 144 mm . in diameter, disk quite flat. Central lenticular part of xumbrella somewhat more than half as wide as entire medusa. It is flat aborally and surrounded by a recurved rim, the periphery of which displays about 20 to 22 slight notches, which are one less numerous than the tentacular pedalia in whose radii they tend to lie. Centra lens separated from peripheral part of exumbrella by a deep, broad, annular groove, slightly over-arched by the recurved rim of the central lens itself. The peripheral zone of the exumbrella includes all that part of bell which lies centrifugal from the annular groove. It may tur be de the inner side by the eep annular nroove and on the outer by a very slight reddish-colored groove which separates it from (2), the zone of the tentacular pedalia. There

Fic. 357 -Atolla bairdii; after Maas in Result. Camp. Sci. Albert rer Prince de Monaco.
A , and B , side views of the medusa; C , marginal canal-sysem and ring-muscle (cut across).
are about 18 to 24 , usually 22 , pedalia, one in the radius of each tentacle. These pedalia are thick ridges separated one from another by shallow radiating furrows, which do not cut ver deeply into the gelatinous substance, so that the tentacular pedalia form a thick, continuous, gelatinous zone. Each pedalium bears a short, solid tentacle, usually carried recurved upwar and provided with strong, longitudinal muscles upon its subumbrella side.

The third zone is that of the pedalia of the sense-organs and lies immediately centrifugal to the zone of the tentacular pedalia. These pedalia of the sense-organs alternate in position and are separated from one another by deep, wide, radiating furrows which occupy the radi of the tentacles. Sense-organs very small with 2 swollen regions upon the ventral (subum brella) side of the bulb where one finds thickened, sensory ectodermal epithelium. Ther is no ocellus and there are no pigment spots either in the ectoderm or the entoderm, but there is a terminal sac-like swelling which contains a crystalline mass of entodermal origin and which is protected by a wide, scale-like expansion on the exumbrella side of the sense club. (See Vanhöffen, 1902; Maas, 1904.)

The fourth or outermost zone of the exumbrella consists of long, slender, marginal lappets supported by the pedalia of the sense-organs, and which are twice as numerous as the latter.

The center of the subumbrella is occupied by the shallow proboscis, the 4 lips of which are simple and cruciform. Surrounding the base of the proboscis is a zone in which are situated the 8 adradial gonads. The gonads vary considerably in size and shape, but normally
appear to be composed of bean-shaped sectors, each genial ridge bein appear to be composed of bean-shaped sectors, each genital ridge being constricted radially lie in the floor of the subumbrella between the 8 gonads. Immediately centrifugal to the zone of the gonads lies a zone of circular muscle-fibers which is divided into separate parts by furrows which lie in the radii of the sense-organs. Beyond this zone lies the outermost ring of circular muscles developed so remarkably that it projects outward from the floor of the subumbrella as a thick annular mass, which is entire, not divided, as are the inner, circular muscles. The cavity of the central stomach communicates with a broad ring-sinus in the subumbrella by means of 4 perradially situated ostia. This ring-sinus corresponds in position to the zone of the gonads upon the subumbrella. Centrifugally it gives rise to a radiating vessel in each tentacular radius and also to an equal number of vessels to the sense-clubs. The ten-
tacular vessels each give off a pair of side-branches which lead into the tacular vessels each give off a pair of side-branches which lead into the rhopalar vessels near
the bases of the sense-clubs. At the point of orioin of each tentacular vesel there is of fusion of the subumbrella.and exumbrella walls of the gastrovascular cavity thus fogion a small cathammal plate in the middle of each tentacular vessel (see fig. 359 C).

Fis. 358.-Atolla valdivia, after Vanhoffen, in Valdivia Expedition. Viem of subumbrella.
The excretory system of the exumbrella has been described under the genus Atolla. In the corners of the central stomach are 4 interradial rows of gastric cirri forming a and the structure of the muscular system, with the exception of the remarkable unitary ringmuscle of Atolla, are quite alike in both Atolla and Periphylla and indicate a genetic relationship between the two forms.

The gelatinous substance of the bell of Atolla bairdii is translucent and milky-blue in color. The central disk of the exumbrella is sprinkled over with rust-red colored patches which become more numerous in the region of the annular furrow, which is of a decided redand a radial red streak extends inward on the subumbrella side tro subumbrella is dark-red and a radial red streak extends inward on the subumbrella side from the base of each senseadradial excretory pores near the 4 angles of the central stomach are dark-red red The 8 so commonly seen in deep-sea medusæ̈ of all ports.

This species is widely distributed over the North Atlantic. It has often been obtained in open nets dragged at depths from 9,0 to 2,000 fathoms, but has also been taken occasionally upon the surface, especially upon the Gulf Stream of the Carolina coast. It is a creature of he deep ocean, not found in bays or estuaries, but is evidently a deep-s
only occasionally and under exceptional conditions come to the surface.
When young the 8 gonads are grouped in 4 interradial pairs, but in later life they swing into adradial positions. The number of antimeres does not alter with age; but in some pecimens one finds some small tentacular pedalia inserted between larger hopatar ones, entacles. These were found by the Valdivia in the Gulf of Guinea, west coast of Africa

Atolla bairdii forma valdivix Vanhöffen.

Medusa 132 mm . in diameter. Central disk only half as wide as bell, smooth, without radial furrows. 20 to 29 tentacles. The 4 interradial septal nodes of the subumbrella are wider than in the typical A. bairdii. 9 specimens were found by the Valdivia in the Indian Ocean. Maas records 6 to 42 mm . in width; and the antimeres range from 20 to 29 without reference to the size of the medusa. These medus x were obtained from depths ranging from about 280 to $\mathrm{I}, 000$ fathoms (see fig. 358). This form is very closely related to A. bairdii but the central disk is only half as wide as the medusa, and the 4 septal nodes are wider than in A. bairdit

The Albatross obtained 3 specimens of this medusa in the Philippine Islands on April ro, 1908, at dredging station No. 5202. The characters and dimensions, in mm., of these specimens are as follows

	${ }_{\text {Specimen }}^{\text {and }}$	${ }_{\text {Specimen }}^{\text {E. }}$	$\left\lvert\, \begin{gathered} \text { Specimen } \\ \text { c. } \end{gathered}\right.$
Exumbrella:			
Diameter of bell	45.5	${ }^{38}$	${ }_{3}^{37}$
Diameter of central lens of esumbrella......................i.	21.5	${ }_{19}^{19}$	
Width of tentacular pedalia.	4	3.5	3.25
Length of tentacular pedalia (in radial direction)	3.5	${ }^{2.75}$	${ }_{2}^{3} 2$
Length of ocular pedalia (in radial direction).	7.5	5	5.75
bumbeella:			
Diameter to outer side of ring-muscle	${ }_{2.25}^{43}$	35	${ }^{34}$
Width of ring-muscle............		- $2 \cdot .5$	
Diameter tof mater edge of goads.	${ }_{15} 1$	${ }^{20.5}$	-
Length (circumferential) of gona		2.5	
Width (radially) of gonad.	6	3.5	3
$\xrightarrow{\text { General characers: }}$ Number of tentacles.	24	22	${ }^{24}$

Atolla gigantea Maas =A. bairdii (?)
Atolla gigartea, MaAs, 8897, Mem. Mus. Comp. Zool. at Harrard College, vol. 23, p. 80, taf. 12, fign. 2-4; taf. r3, fign. 7 -9; af. 14, ig. 6 .
This form resembles A. valdivic, but the outer edge of the annular ridge in the ring-furrow is notched, not simple and entire as in A. bairdii and A. valdivic. Thus the central lens is half as wide as the bell, as in A.valdivia. Ring-furrow wide, and peripheral to it there is the notched, annular ridge, and beyond this is the zone of pedalia and lappets. Tentacular pedalia somewhat shorter and wider than the rhopalar pedalia. Medusa is 150 mm . wide. Num ber of tentacles (?) Gulf of Panama, Pacific coast of Central America (see fig. 359)

Maas is uncertain as to whether or not the margin of the central lens is plain or notched. Radial furrows of the ridge in the ring-furrow may be due to contraction in preservative fluids.
 Bell 27 to 50 mm
Bell 27 to 50 mm . wide, 9 to 15 mm . high. Central lenticular disk 14 to 27.5 mm . wide with 23 faint radial furrows at the margin. Annular furrow 0.5 to 1.75 mm . wide. Zone
of pedalia 2.25 to 3.5 mm . wide. 24 tentacles. Species distinguished by 7 to 9 small , pearlof pedalia 2.25 to 3.5 mm . Wide. 24 tentacles. Species distinguished by 7 to 9 small, pearl-
colored, papilla-like protuberances over the exumbrella surfaces of each marginal lappet; commonly with one papilla in the center and the others in two lateral rows. 2 specimens found by the Valdivia off Cape of Good Hope, Africa, November 18, 1898; and I by the Scottish Antarctic Expedition, in a trawl at $\mathrm{I}, 33^{2}$ fathoms, in the same region.

359.

360 .

 Atolla wyvillei Haeckel.

 (f) Collasitis achillis, Haxcker, , 8880 , lcoc. cit., p . 489.
 U. S. Fish Commision, vol. 23 , p . 1138 , plate 2 , fig. 7 ; plate 3 , figs. Io, II.

This species is characterized by the numerous, wide, radial notches or furrows in the margin of the central lens of the exumbrella. These are much wider and deeper than in A. verrillii. Exumbrella surface of lappets smooth, not beset with papillæ as in A. chuni. This medusa is probably identical with Collaspis achillis Haeckel, but in the latter the furrows of notches which vary greatly in prominence in individual medusx. Moreover in A shyulle the pedalia are short and broad, while in A. achillis they are long and narrow. The central lens and the pedalia are separated only by a ring-furrow and there is no prominent ridge peripheral to the ring-furrow such as is seen in A. bairdii. The medusa becomes 73 mm . wide and there are usually about 22 to 28 tentacles. The bell is flatter than a hemisphere. Found in the Antarctic and Southern Atlantic and Pacific. The Albatross obtained it in the Philippine
Islands, tropical Pacific.

I am inclined to believe that A. wyvillei, A. verrillii, A. alexandri, and A. achillis are only varieties of one and the same species. "A. alexandri" is a form of A. wyville i with indistinct notches in the margin of its central lens.

A specimen was dredged by the Albatross on April 10, 1908, dredging station No. 5201 , off the south end of Leyi Island, Philippine Islands, from a depth of 554 fathoms. A side view is shown in fig. 36 r . There were 23 pedalia and tentacles, and 22 radial furrows in the
margin of the central disk. The dimensions in millimeters are as follows:

Atolla wyvillei forma verrillii Verrill.

 tion, Bd. ro, Zool. 2, P. 36 .

This form is distinguished from the typical Atolla bairdii and resembles A. wyvillei by the absence of a projecting annular ridge on the outer side of the ring-furrow, the numerous, fine, radial furrows of its central dome, the long, narrow pedalia of the sense-organs, and the smallness of its marginal lappets. The medusa becomes 95 mm . wide and has between 14 to 28 , usually 22, tentacles and marginal sense-organs and 28 to 56 small lappets. Central lens of Pacific Oceans. Most in A. bairdiii. It is found in deep water in the Atlantic, Indian, and Pacific Oceans. Most of the specimens have been obtained in open nets dragged from depths of 373 to 2,369 fathoms; but several have been found upon the surface. It is probably only variety of A. wyvillei.

Family ATORELLIDE Vanhof̈en, 1902.

family characters

Coronatx with 6 rhopalia

There is but a single known genus, this being Atorella
The relationship between the Atorellidæ and other Coronatæ is unknown; for in the Periphyllidæ, Paraphyllinidæ, and Ephyopsidæ there are 4 or 8 rhopalia, and in the Collaspidæ large (more than 8) but indefinite number of these organs; and it is impossible at present to ever, that its affinities are much closer to Atolla than to the other Coronate.

Genus ATORELLA Vanhöften, r902

Atorella, Vassiörrins, 1902, Wissen. Ergeb. deutsch. Tiefsee Expedition, Dampfer Valdivia, Bd. 3, Lff. T, P. 33.- MaAs, , y903, Scyphomedusen der Siboga Expedition, Monog. II, p. 10.-Btgexow, H. B., 1909, Mem. Museum Comp. Zool. at Harvard
College, vol. 37 , P. 30.
The type species is Atorella subglobosa Vanhöffen, of Dar es Salaam, Africa, and from the Malay Archipelago.
generic characters.
Coronatr with 6 marginal sense-organs, 6 tentacles, 12 marginal lappets, and 12 pedalia. A coronal furrow is present, and the I2 pedalia alternate with the lappets. There is a poorly developed ring-muscle in the subumbrella. . 4 lips, 4 interradial gonads.

Atorella subglobosa Vanhöffen

 MaAs, 1903, Scyphomedusen der Siboga Exped.,
Comp. Zool. at Harvard College, vol. ${ }^{27}$, P. 30 .
Bell globular, 15 to 17 mm . in diameter. 6 mainly solid, tapering tentacles, about as long as the bell-radius. 6 marginal sense-clubs, each with a terminal mass of concretionary crystals, arise from very shallow niches in bell-margin. There are 12 wide, shallow, slighty cleft marginal lappets. Ring-furrow on exumbrella not very deep. Central disk of exumbrella more than twice as wide as zone of pedalia. The 12 pedalia alternate with the lappets and are separated one from another by shallow furrows. Throat tube 4 -sided, mouth cruciform. There are 4 clusters of gastric filaments, each cluster consisting of about 20 filaments. The ring-sinus gives rise to 12 pouches in the radii of the tentacles and sense-organs and there is a marginal ring-canal as in Atolla or Periphylla. 4 interradial, sac-like, swollen gonads
arise from floor of subumbrella beyond the zone of the
 gastric filaments. Muscular system of subumbrella quite similar to that of Nausithoë, but the ring-muscle is very poorly developed.
Stomach and gastric filaments brown, gonads yel-lowish-brown. Subumbrella muscles white, all other parts translucent.
Vanhöffen describes a specimen from Dar es Salaam, east coast of Africa, and Maas describes another from the Malay Archipelago. Our description is derived mainly from that of Mass, his specimen being

Atorella vanhoffeni Bigelow.

Atorella vanh hoffen; Bigesiow, H. B., roog, Mem. Museum Comp. Zool. at Bigelow had three specimens. In two of these the 6 mm wide, and one was 3 mm . high and 7 mm . in diameter. The bell was 5 mm . high and 6 mm . wide, and one was 3 mm . high and 7 mm . in diameter. The
ring furrow is a deep cleft. The entire exumbrella surface is besprinkled with wart-like, nema-tocyst-bearing prominences, thus being very different from the smooth surface of the bell of Atorella subglobosa. The 6 tentacles are each about as long as the bell-diameter. They taper outwardly but each terminates in a knob-like tip, instead of having simple, pointed ends as in A. subglobosa. The 6 rhopalia closely resemble those of A tolla, but the exumbrella surface of its covering scale is covered with thickened ectoderm, not with a thin layer as in Atolla. There is a large lithocyst and ventral bulb, but no ocellus. There are i2 long, oval, marginal

lappets. The stomach is flat and shallow and the 4 lips are short and thickened. The 4 interradial septal nodes are narrow and the perradial ostia wide. The gastric cirri are arranged in 4 interradial groups, each group arising from a stout gelatinous stalk, and consist-
ing of 80 to 100 filaments. The canal-system of the bell resembles that of Periphylla. The 4 perradial ostia of the central stomach lead into a wide ring-sinus, which gives rise on its outer side to i2 broad radial-canals in the radii of the tentacles and sense-organs. These radialcanals branch at their ends and unite to form a marginal festoon canal. The ring-muscle of the subumbrella is very weak, but the subumbrella plates at the bases of the tentacles are very prominent.

There are 4 gonads, each being a leaf-shaped body folded so as to leave a deep groove along its middle line on the inner surface, and this groove causes the gonad to appear as if double, although this is not truly the case for each gonad is attached along a single line. The gonads are orange-yellow, all other parts colorless. This is a surface species. Bigelow records it from off the Pacific coast of Panama.

Order SEMAEOSTOMEA L. Agassiz, 1862.

Sèm aeostomea, Acassirz, L.,., 1866 , Cont. Nat. Hist. U. S., vol. 4, pp. 9, 159 .

Characters of the semaeostomea,
Scyphomedusæ without a coronal furrow and without pedalia. With a simple, central mouth-opening, the 4 perradial angles of which are developed into large curtain-like or gelatinous lips. With hollow tentacles and marginal rhopalia. The gonads are in sac-like folds of the entodermal wall of the subumbrella. Without interradial septal nodes in the stomach.

The families of the Semaeostomere are as follows:
(r) Pelagidx $\mathrm{Grcxnsacr}, 1856$. The central stomach gives rise to completely separated, unbranched radiating pouches.

 mubamily Umbrosidi.. The tentacles arise singly from the clefts between the marginal lappets at the bell- -
margin B. Subfamily Sthenonidii. The tentactes arise in linear clusters from the floor of the subumbrella. Subfamily Aurelidii. The tentacles and lappets arise from the sides of the exumbrella above the margin.
Invaginated gonads with subgenital pits.

Family PELAGIDe Gegenbaur, x 856 .

family characters.
Scyphomedusx with 8 or 16 marginal sense-organs, 4 perradial and 4 interradial, and, when present, 8 adradial. 8 or more tentacles which arise singly from the clefts between the marginal lappets. i6 to 64 marginal lappets. The mouth is simple and cruciform, and is situated at the extremity of an oesophagal tube, the 4 perradial corners of which are produced to form 4 long mouth-arms, the free edges of which are complexly crenulated. The simple, lenticular, central stomach gives rise to completely separated, radiating pouches the centrifugal ends of which give rise to simple, unbranched lappet-pouches. There is no ring-canal. The onads occupy 4 interradial folds in the wall of the subumbrella. In some but they are usually sunken, forming 4 pits in the floor of the subumbrella

The medusx of this family are readily distinguished from the Coronatæ by the absence of a coronal furrow and by the remarkable development of the 4 perradial corners of the mouth, which extend outward as 4 long palps or mouth-arms, carrying the free edge of the lips along with them in double curtain-like fringes. Also the exumbrella of the Pelagidx is smooth and displays none of the complex sculpturing seen among the Coronate; finally, the gastrovascular system of the medusx of the Pelagidx is simpler than in the Coronatæ, fo the central stomach is without interradial fusions of its upper and lower walls, and it con sists merely in a wide, lenticular, central space which gis.

The Pelagidx are also closely related to the Cyan
The Pelagidæ are also closely related to the Cyaneidæ. In the Cyaneidæ, however, the tentacles arise from the floor of the subumbrella at some distance in from the bell-margin,
whereas in the Pelagidæ they arise from notches between the marginal lappets. Also the tentacles of the Cyaneidx are usually grouped in clusters, while in the Pelagidæ they aris singly. A still further distinction lies in the fact that the radiating pouches of the stomach are simple in the Pelagidx, while in the Cyaneidx they give forth numerous blindly ending, non-anastomosing canals, which enter the marginal lappets.

Medusx of the genus Pelagia develop directly from the planula without going through a sessile scyphostoma stage. The planulæ of Chysaora and Dactylometra, however, attach late and produce a number of ephyre.

The Pelagidx are of world-wide
The Pelagia are most abundant in the tropical to live permanently at great depths.

The development of Pelagia has been studied by L. Agassiz (Cont. Nat. Hist. U. S.) and by A. O. Kowalevsky, 1874 (Memoirs of the Imperial Society of the Friends of Natura History, Anthropology and Ethnography of Moscow, vol. Io, p. 7, plate 3 [Russian text]) A synopsis of the genera of the Pelagida follows:

organs, 16 marginal lappets.
Chrysaorc Pekron And Lesurus,
With 8 margial sense-organs. (3×8) 24 tentacles, 3 between each successive

Genus Pelagia Péron and Lesueur, 1809 .

 generic characters.
Pelagidx with 8 adradial tentacles, alternating with 8 rhopalia. With 16 marginal lappets. 16 radiating stomach-pouches in the rhopalar and tentacular radii, each of which ends in 2 side branches in the marginal lappets. No ring-canal.

The type species is Pelagia noctiluca of the Mediterranean, first described by Forskål, 1775, as Medusa noctiluca. At least I4 so-called "species" of Pelagia are known, I from the Mediterianean, I from the Mediterranean and Atlantic, 6 from the Atlantic, 5 from the
Pacific, and I from the Indian Ocean. They are more abundant in warm or torrid regions, but one species is found in Behring Sea and another near the Cape of Good Hope. All of the Atlantic species are closely related one to another, and future researches may demonstrate that they are only geographical races. In fact the distinctions between "species" have been largely determined upon preserved material, and some of them may be separated upon unnatural conditions of contraction due to the effects of preservation; thus Vanhöffen, 1888 distinguishes a number of "species" upon the folding and "wrinkling observed in the exumbrella warts of preserved medusce. At present the "species" are in almost hopeless confusion, as will appear from the following table based largely upon Vanhöffen's work. Indeed it
seems probable that the foldings observed by Vanhöffen in the nettle-warts are largely due o shrinkage in alcohol
The medusx of Pelagia, being pelagic in all stages, are creatures of the high seas; and one would expect the species to be of world-wide distribution and at the same time to have developed many local varieties which are not very clearly differentiated from their parent tocks. I believe that all of the forms may be grouped into 4 cohorts as follows
(1) P. noctiluca, neglecta, and crassa, of the Mediterranean and Atlantic, with large, elongate nettle-warts over the
(2) Allied to (I) in the Pacific, we find P. fazeola, denticulata, tahitiana, and papillata with large oval, erect nettlewarts. (3) P. cyanella, perla, discoidea, phosphora and minuta of the Allantic with small, rounded nettle-warts.

Cohorts (1) and (2) are closely related; and (3) and (4) form another group.
As in Cyanea and Aurellia so in Pelagia we find that the Linnean system is inadequate express the relationship of the numerous, closely related forms.

Synopsis of the Forms of Pelagia.

	P. noctiluca Péron et Lesueur.	P. cyanella Péron et Lesueur.	P. panopyra Péron et Lesueur.		$\begin{aligned} & \text { P. discoidea } \\ & \text { Eschscholtzif. } \end{aligned}$	P. centiculata Brandt. A variety of P flaveola (?)
Width of disk in mm .	60	50	50 -	16 to 30	70 to. 80	60
Height of disk in mm.	32	40	30	8 to 15	15 to 20	50
Character of nettle-warts on exumbrella.	Large, elongate, elliptical, with cross-Ioldings x	Small, roundish, thick-set. Found only in middle $\underset{X}{\text { zone of disk. }}$	Small, round, elliptical, with longitudinal fur row and crossfoldings.	Very large, thick-set, and egg-shaped. 7 .		Large, elongate over entir Especially. thick at apex.
Shape of marginal lappets.	Square-cornered, quadratic.	Twice as wide as high. Outer edge conver.	Quadratic.	$\begin{aligned} & \text { Rounded, double, } \\ & \text { twice as, wide as } \\ & \text { long. } \end{aligned}$	Flat and cleft so as to be double.人	Quadratic.
Length of mouth-tube in terms of disk radius.	$\text { ror } r-$				$\stackrel{r-}{\square}$	
Length of mouth-arms in radius (r).	$\stackrel{2 r+}{>}$			$\left.\right\|^{r}$	$\frac{3 r}{3^{r}}$	$\left\lvert\, \begin{aligned} & 47 \\ & x \end{aligned}\right.$
Where found.	Mediterranean.	Pernambuco, coast of Brazil and Florida to Cape Cod, in Gul Stream	Tropical Pacific.	Coast of Japan, Paumotos Islands, tropical Pacific.	Cape of Good Hope, Africa.	Behring's Sea, Aleutian Islands.
Color.	Variable. Yellowbrown to reddishbrown. Gonads ually dark-red. Mouth-arms yellowish. Nettlewarts reddishbrown.	Variable. Usually blue-violet to pale blue. Nettle-warts reddish-brown. Tentacles reddish purple.	Variable. Varying from light ro Mouth-arms mo violet. Gonads more purple. Nettle-warts violet.	Light-yellowish. Tentacles citron yellow. Gonads brownish-yellow. Nettle-warts tipped with orange.	Light-reddish. Palps rose-red Tentacles pur-ple-red. Gonads whitish.	Light violetred. Tentacles red. Nettlewarts brown

*Decelopment without alternation of generatio

The remarkable development, which is direct, without a sessile larval stage, is described in detail under P. noctiluca and P. cyanella. The young medusa passes through a 4 -tentacled tage, before acquiring its 8 adradial tentacles.
"Zonephyra corona," Agassiz and Mayer, 1902 (Mem. Museum Comp. Zool. at Harvard College, vol. 26, p. 157, pl. 4, figs. I9, 20), is probably a young Pelagia.

	$\begin{gathered} \text { P. perla Haeckel. } \\ \text { A variety of } \mathrm{P} . \\ \text { cyanella (} \mathrm{P}) \end{gathered}$	P. phosphora Haeckel.*	$\xrightarrow{\text { P. placenta }}$ Haeckel. A variety of P. paniopyra.	$\begin{aligned} & \text { P. neglecta } \\ & \text { Vanhhöfen=a } \\ & \text { variety of } \mathrm{P} \text {. } \\ & \text { noctiluca. } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { P. crassa } \\ \text { Vanhöffen. } \end{gathered}\right.$	P. minuta Vannöffen. =P. phos- phora (?
Width of disk in mm .	50 to 60	40 to 50	40	53 to 60	35	12 to 2
Height of disk in mm.	40 to 50	25 to 30	12	23 to 28	${ }_{3}$	3 to 6
Character of nettle-warts on exumbrella.	Numerous, rounded, small, and flat. 	Small, rounded, with longitudinal furrow and cross foldings. None on upper third of exumbrella. x	$\begin{aligned} & \text { Numerous, thick- } \\ & \text { set but flat and } \\ & \text { small. Surface } \\ & \text { nodular., } \end{aligned}$	Large, rounded to elliptical. Without longitudinal furrow foldings.	Large, flat, ellip tical with a longitudinal furrow and in distinct cross- foldings. None at bell-margin.	Rounded, small, thick- set, without longitudinal furrows, but with very thick crossfurrows.
Shape of marginal lappets.	Quadratic, with concave outer edge.	Rounded, almost semicircular.	$\begin{aligned} & \text { Twiec as wide as } \\ & \text { high. Flatly } \\ & \text { rounded. } \end{aligned}$	Quadratic.	$\begin{aligned} & \text { Twice as wide as } \\ & \text { high. } \end{aligned}$	Wider than Ligh.
Length of mouth-tube in terms of disk Fadius.	$0.33{ }^{\text {r }}$	0.57 \checkmark				$0.66 r$
Length of mouth-arms in terms of diss radius (r)	${ }^{37}$		2	$\stackrel{2.5 r}{\triangleleft}$		$\sqrt{ }$
Where found.	Atlantic coast of Europe.	Tropical parts of the Atlantic. West coast of Africa.	Tropical Pacific, South America, Philippines.	Mediterranean and coast of Africa.	In middle of tropical Atlantic.	Coast of Brazil, Pernambuco.
Coior.	Variable. Orange to rose-red or fesh-colored, or with rusty-yellow flecks. Nettle-warts orange. Tentacles and gonads red.	Variable. Rosered to violet-red or purple. Arms, ribs, tentacles, ribs, tentacles, usually darker red than the bell.	$?$	$?$?	?

Griffiths and Platt, 1895 (Nature, vol. 52, p. 564), find that the violet pigment of Pelagia has the composition $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NO}_{7}$. It is soluble in alcohol, ether, and acetic acid, and especially
soluble in $\mathrm{CS}_{\text {. }}$. Insoluble in water. It quite distinct from the blue coloring matter of Hydromedusæ as determined by Colasanti, 1888 (Centralblatt für Physiol., Bd. 2, p. Io).

Pelagia noctiluca Peron and Lesueur.
Plate 60, figs. I to 3.

 407 (Histology of oogenesis).
The following is a description of a typical, adult specimen from the Bay of Naples Disk somewhat higher than a hemisphere when contracted, but flatter than a hemisphere
when expanded. In ordinary contraction it is about 49 to 55 mm . in diameter and 31 mm high. Sides of bell relatively straight and sloping, the apex flat. Numerous nettle-warts over the exumbrella, arranged in more or less irregular lines radiating from aboral apex of exumbrella. These warts are rich orange-red in color and are elongate and linear, some lose their linear shape and become small, simple, and more or less oval

The 8 marginal sense-organs are set in deep niches in the perradii and interradii. The sense-club has no ocellus, but contains only a terminal mass of deeply pigmented orange-colored crystalline concretions of entodermal origin. There is no sensory pit in the exumbrella abov the sense-club. T
bell-diameter.
There are 16 subrectangular marginal lappets, with shallow median notches and rounded angles. The septum between the ultimate branches of the radiating stomach-pouches in the tube is as long as the bell-radius. The 4 lanceolate lips or palps, with their complexly folded margins are each about. I. 33 as long as the bell-diameter. Thus in an adult medusa with disk 49 mm . wide the palps were 68 mm . long.

The bell has a rich rose-purple tinge; the gonads, the entodermal cores and the tentacles being especially deep in this color. The warts upon the exumbrella and along the outer edges of the palps are orange-brownish red.

This medusa is abundant at times in the Mediterranean especially in summer, although large specimens are rarely seen in winter. It may be locally abundant during several successive seasons and then vanish for years. For many years it was all but unknown in the cessive seasons and then vanish for years. For many years it was all but unknown in the
Bay of Naples but since $1 g 00$ it has been one of the commonest Scyphomedusæ in this region. It ranges widely over the warm regions of the Atlantic.
The development has been studied by Krohn, Kowalevsky, Hamann, Goette, Hyde, and Metschnikoff. Hamann, r883, has made a detailed study of the development of the gonads, and their structure has been described by the brothers Hertwig, 1878. They appear as 4 interradial, elongate ridges in the entoderm of the subumbrella. The entoderm forms a serie of follicles in which the According to Mets
Acording tetschnikoff, the egg is violet-brown and is laid between 12 and 2 in the afternoon, in December, in the Mediterranean. Segmentation is total and nearly equal at the hinder end of the body. The blastopore does The gastrula results from invag of the larva. Thus, according to Goette, 1893 , the mouth is ectodermal and forms by invagination at the hinder end of the larva, but the invaginated sac by no means fills the segmentation cavity. The first pair of stomach-pouches arise from the entoderm and are 180° apart, then follows an ectodermal pair 90° away from the first. The latter then develop 2 lateral pouche each, and at a later period the entodermal pair each gives rise to 2 lateral pouches, thus giving
a larva with 6 ectodermal and 6 entodermal stomach-pouches; finally the ectodermal pouches oive rise to 4 new adradial pouches and the larva has 16 stomach-pouches-io ectodermal and 6 entodermal. There is thus a striking analogy between its development and that of the scyphostoma of Aurellia, according to Goette.

The external features of the transformation of the free-swimming larva into the medusa have been studied by Krohn (1855), Kowalevsky (1873), etc. The mouth-end of the larva becomes expanded and crater-like, with the mouth at summit of central cone of crater. The depressed region around the cone becomes the subumbrella. The lappets, into which the gastrovascular cavity is continued, grow out at intervals around the margin. The covering of clia is lost from disk. Thus the free-swimming scyphostoma is converted into a medus without strobilization (see Goette, I803)

Reasoning by analogy from the excellent work of Hyde, 1894 (Zeit. für wissen. Zool., Bd 58, p. 531), upon Aurellia, it is probable that only the subumbrella floor of the second pai of evaginated gastric pouches is formed from ectoderm, their exumbrella sides being of entoderm. (See also Hadži's work upon Chrysaora.)

This variety is distinguished by the large, elliptical nematocyst-warts upon its exumbrella. These warts are usually about twice as long as they are wide and display cross-furrows. Specimens in which the beil is 53 to 60 mm . wide have a bell-height of 23 to 28 mm . Mouth-tube and at the Canary Islands. Were it not for the very large, elliptical nettle-warts of the exumbrella, it would be identical with the typical Pelagia noctiluca Péron and Lesueur. It is so closely related to P. noctiluca that I believe in view of the ordinary variability of individuals of the same species in Scyphomedusx, it had best be omitted from further consideration and merged with P. noctiluca.

Pelagia cyanella Peron and Lesueur.
Plate 6i, fig. r.

Dianaea cyaneella, LAMARCK, 1816, Hist. Anim. sans vert, tome 2 , p. 507 .

This American medusa is very closely related to the European P. noctiluca, of which it is apparently only a local variety

Bell about 40 mm . high and 50 mm . broad; somewhat fuller than a hemisphere, being a little less broad at margin than a short distance above. Numerous small wart-1ike nemato cyst capsules are sprinkled thickly over the exumbrella and are especially thick in à zone at about mid-height of bell; these protuberances are reddish in color and tend to be arranged in radiating lines. 8 very long, highly contractile, hollow tentacles alternate with 8 marginal sense-organs. Each sense-club is set within a niche between two adjacent lappets and is protectelus , but contains a terminal, entodermal mass of crystalline concretions which are deepl no ocellus, but contains a terminal, entodermal mass of crystalline concretions which are deeply
pigmented. 16 marginal lappets, hemispherical in shape. There is a long, narrow, 4 -sided proboscis, the radial corners of which extend downward as 4 long, flexible mouth-arms, the free edges of which are complexly crenulated. The proboscis, together with the mouth-arms or palps, is about 3 times as long as bell-height. There are 4 complexly folded horse-shoeshaped gonads in interradial positions upon the floor of the subumbrella, and immediately centripetal to them are 4 subgenital pits or cavities extending inward from the outer surface of the subumbrella. The quadrangular œesophagus leads into a circular, disk-shaped, central stomach when gives. Each of these pouches gives off a pair of unbranched curved canals organs and tentacles. Each of these pouches gives of a pair of unbranched, curved canal
which enter the lappets, but do not form a ring-sinus. There are 16 well-developed strand of radiating muscle fibers in the wall of the exumbrella adjacent to the gastrovascular cavity These extend outward in the radii of the tentacles and sense-organs, and fork as they approach the bell-margin.

The color is quite variable, sometimes bluish, sometimes slightly yellowish. Exumbrella and mouth-arms sprinkled over with brownish-red nettling-warts, tentacles reddish-purple.

This species is found among the West Indies and Florida Reefs, and in summer it may dift northward in the Gulf Stream so as to appear off the southern coast of New England from July to September.
L. Agassiz, 1860 and 1862 , found that the planulæ of this species, as in P. noctiluca develop directly into medusæ without going through a sessile scyphostoma stage and without alternations of generations. The planulx are set free into the water where each develops into a single medusa. The minute details of the development have been worked out upon Pelagia noctiluca by Metschnikoff, 1886 (Emb. Stud. an Medusen, Wien.), and by Goette, 1893
(Zeit. für wissen. Zool., Bd. 55, pp. $650-602$). The gastrula is formed by invagination. The Zeit. fur wissen. Zool., Bd. 55, pp. 659-692). The gastrula is formed by invagination. The
frst pair of radial stomach-pouches appear, according to Goette, as outpocketings from the
entoderm and these are quickly followed by another pair from the ectoderm of the throattube, the two latter being 90 away from the former. The ectodermal pouches then give rise each to two side branches and soon thereafter the entodermal do the same. Thus the central stomach comes to have 12 radial pouches. 4 more radial pouches are soon formed from the ectodermal pouches, so that the young medusa finally possesses 16 radial pouches It follows in adult medusa that the center of the exumbrella side of the centralstomach is derive ther 2 are entodermal. The 4 interradial pouches are ectodermal, and of the 8 adradial pouches, 4 are ectodermal and 4 entodermal. The wall of the œesophagus is of ectoderma origin. The young medusa soon develops 8 lobes which bifurcate, giving i6 marginal lap pets. The 8 marginal sense-organs develop before the tentacles. The mouth is at first a sim ple, round opening at the center of the crater-like ectodermal depression. It soon acquire 4 lips, but the mouth-arms do not develop until a later stage. It is probable that the ecto derm does not take so large a share in the formation of the stomach-pouches as Goette sup poses (see Chrysaora and Aurellia).

Pelagia panopyra Péron and Lesueur.
Medusa panopyra, Péron er Lesubur, 1807, Voyage aux Terres Australes, planche 3r, fig. 2

The characters of this widely distributed Pacific form are described in the table under the genus Pelagia. It is distinguished from the closely allied P. flaveola by its pink coloration, whereas P. faveola is yellowish. Moreover the nettle-warts of P. panopyra are lo

Fic. $3^{664}-$ Pelagia faveola, from Tahiti, after Agassiz and Mayer, in Mem.
P. panopyra is common off the coast of California and extends across the Pacific to the Malay Archipelago, and northward to Japan.

Vanhöffen gives the dimensions of a specimen as follows: Bell 27 mm . wide, 6 mm . high; mouth-tube 15 mm . long; lips 27 mm . long.
When young
begin to develop
Pelagia panopyra var. placenta
Pelagia placenta, Harcrisi, 1880, Syst. der Medusen, P. 5ro.-Vangöfren, r888, Bibliotheca Zoologica, Bd. x, Heft. 3, P. 12,
This appears to be a very close variety of P. panopyra. Both medusæ are widely distributed over the tropical Pacific. See synoptic table of forms of Pelagia. I believe that this
form can not be distinguished from P. placenta for I have found specimens which intergrade in one character or another. Many specimens of this medusa were found by the Albatross in men are as follows: Diameter of bell, 35 ; height of bell, 15 ; length of œesophagus, I4; length of lips, 30 ; length of tentacles, 50 .
The largest exumbrella warts are near the center of the bell and they decrease in size toward the margin, where they are very small. The surface of these warts is nodular and acks the cross-foldings seen in the typical P. panopyra, but this character intergrades

Pelagia flaveola Eschscholtz.

 Pelagia papillata, Harccrit, 1880, loc. citt, p. 509 .

For description see synoptic table of forms of Pelagia, and figure 364.
thickly at the aboral apex of the bell. Tropical Pacific from South Ae-warts which cluster

Pelagia perla Haeckel.

This appears to be a North Atlantic variety of
mbrella are more numerous and the outer margin P. cyanella. The nettle-warts of the convex as in P. cyanella. For description see the synoptic table of the are concave instead of
P. discoidea from the Cape of Good Hope is probably identical with P perla.

Pelagia phosphora Haeckel.

This form is closely related to P. cyanella, but may possibly be distinguished from it by the larger nettling-warts upon the exumbrella, which are round and 0.5 to 1 mm . in diameter and each gives rise to a longitudinal comb-like crest. Marginal lappets wider than long. eter in length. Bell hemispherical, 40 to 50 mm . in diameter. Color quite variable, eliampurple, violet, or reddish; gonads, tentacles, and median ribs of the mouth-arms of dater purple, violet, or reddish; gonads, tentacles
color than other parts of the animal.

Found in the eastern Atlantic from
being especially abundant in the tropics.
mm . Weight ${ }^{\text {ren }}$, gives the following dimensions for this species: Diameter of bell, 76 mm.; height of bell, 25 mm .; tentacles, 76 mm . long; nettling-warts on exumbrella, 2.5 mm . high.
${ }^{16}, \mathrm{I}_{7}$), is a variety of, or possibly the young of, P. phosphica, Heft. 3, p. 12, taf. 6, fign. 16, 17), is a variety of, or possibly the young of, P. phosphora. The nettling-warts on the (due to contraction?). No mature specimens were described by Vanhöfen Pernambuco, Brazil, early in July.

Pelagia crassa Vanhöffen.

$$
\text { This appears to be a small variety of } P \text {. noctiluca. }
$$

Bell about 13 mm . high and about 35 mm . in diameter. Gelatinous substance of exum brella thicker than in any other Pelagia. Marginal lappets about twice as wide as long.

Esophagus shorter than in P. cyanella, only about one-quarter as long as bell-diameter. Mouth-arms also much shorter, only about as long as bell-diameter. Nettling-warts upon are concentrated near apex of bell and not found near margin, elliptical in shape, sometimes quite flat, or with a well-developed longitudinal comb-like ridge crossed by corrugations. The largest warts are found at the apex of the exumbrella and they become smaller toward the periphery. In the variety sublavis the bell is arched and more hemispherical than in P. crassa. The gelatinous substance is thicker and the nettling-warts are larger and flatter than in P. crassa. These forms are found in the middle of the tropical Atlantic between Africa and South America

Genus CHRYSAORA Péron and Lesueur, 1809.

The type species is C. mediterranea Péron and Lesueur, of the Mediterranean.
generic characters.
Pelagidæ with 8 marginal sense-organs, 24 tentacles (3 in each octant), and with 32 marginal lappets.

The medusx of Dactylometra pass through a "Chrysaora stage", in their development, and there can be but little doubt that some of the so-called Chrysaora medusæ are only immature Dactylometra. The difficulty in distinguishing Chrysaora is still further complicated by the very variable, individual coloration of these medusx, and by the fact that some species
of Dactylometra, such as D. quinquecirtha itself, become sexually mature in the Chrysaora stage when living in brackish water. The Chrysaora and Dactylometra medusæ are widely distributed over the tropical and temperate seas and there are many local races. I believe that future study will reduce the species to two or three, with numerous local varieties, as in Pelagia or Cyanea.

Chrysaora hysoscella of the Mediterranean and Atlantic, and C. melanaster and C. helvola of the North Pacific appear to be distinct species, while the other so-called species may be varieties of the three above named or merely immature specimens of Dactyonerra. C. hap and C. melanaster finally develop small, lateral lappets upon the sides of their 16 ocular lappets and thus approach the Dactylometra condition in having 48 marginal lappets. The tentacles, however, remain ${ }^{2}$ name Melanaster for Pelagidæ with 48 lappets and 24 tentacles, but as this appears to be but a transient stage in the process of growth of Dactylometra, or a late stage in the development of Chrysaora, we prefer not to adopt it.

Chrysaora hysoscella, which is probably identical with C. mediterranea, is often hermaph roditic; young individuals being male, middle-aged ones hermaphroditic, and old ones female. In other cases, however, the medusæ are throughout life of one sex; while in others male saccules develop among the old female gonads, and in other parts of the entoderma layer of the subumbrella.

The development of Chrysaora is through a sessile scyphostoma-stage, and the ephyra is produced by polydiscus strobilization. The ephyra passes through an 8 -tentacled stage in whe The mode condition seen in the adult of Pelagia.

Tvatives, has been the subje 4 primary stomach-pouches of the scyphostoma, and their hers. The view of Goette ject of a prolonged discussion between Claus and Goette, and ectoderm received support from Hyde, and was generally accepted until 1907 when Hadži and also Heric (Arbeit. Zool. Inst. Wien, Bd. I7, Heft. I) made further studies of the development of Chrysaora. It should also be remembered that R. P. Bigelow, igoo, in his study of th development of Cassiopea is in accord with the views which were later put forth by Hadži.

Hadži finds that some of the free-swimming planulx of Chrysaora are 4 or 5 times as large as others. They swim with the broad end forward and soon settle upon ulva, etc., attaching by means of their forward ends. The entoderm, which was previously a solid mass, then hollows out and the larva becomes two-layered, and the uppermost (the former posterior) end becomes the widest. The mouth then breaks through, the oral pole flattens laterally, and 4 tentacles develop, 2 in the short and 2 at the ends of the long diameter. The
The view of Claus has received strong support from Hadži who casts serious doubt upon Geotte's interpretation that the œsophagus of the scyphostoma is always composed of invaginated ectoderm.

Hadzı, whose research upon Chrysaora appears to have been carefully studied, finds that the œesophagus of the scyphostoma is entodermal and that the mouth breaks through from the inside, the entoderm thus taking the active share in its formation, and no invagination of ectoderm occurring. Indeed Hadži finds that the cells lining the throat of the scyphostoma resemble ectodermal cells in having nematocyst capsules and glands, but they are nevertheless solely of entodermal origin. From this it follows that the 4 primary stomach-pouches are also entointertentacular tæniolæ are formed from 4 simple, longitudinal infoldings of the entoderm of the stomach wall, the ectoderm taking no part in their formation. The primary stomachpouches are thus the passive result of the infoldings which form the tæniolæ, not of an active utgrowth of pouches as Goette believes.

Hadži's view appears to be the more reasonable, for if Goette were correct one half of the gonads would be ectodermal and one half entodermal, whereas according to Hadži they are all entodermal; moreover, according to Goette, the mouth of the frst ephyra set free in strobilization has its œesophagus lined with ectoderm, while those ephyre which follow it have their throats lined with entoderm, an anomalous condition. According to Hadži and Heric, how-
Ceric finds in the strobilizati

Heric finds in the strobilization of the scyphostoma of
rysaora that with the exception of the terminal ephyra all of

Fic. 365 .-Diagrammatic section of a ssroibilizo of Chrit seaction a atree
Heric, in Arbeit. Zool. Inst Heric, in
Wien.

growth of the throatt-ube
$s m$ sepal muscle.
crotoderm
crosshatcheded entoder
cross-hatched, entoderm plain,
intermediate lamella doted. Chrysaora that with the exception of the terminal ephyra all of
the mouth-tubes of the chain of ephyræ are formed from the the mouth-tubes of the chain of ephyræ are formed from the
connecting tube which joins all of the ephyre together. The external wall of this connecting tube is ectodermal and its inner wall entodermal. 4 perradial clefts develop in the side wall of each tube near the upper end where it joins with the exumbrella of the overlying ephyra. - The lower edges of these clefts grow outward and form the 4 lips of the ephyra, while the 4 connections are interradial and are in the radii of the tæniolæ which constitute their inner sides.

The 4 subgenital cavities of the ephyra are new formations and not derived from the 4 funnel-cavities of the scyphostoma. The 4 interradial septa of the stomach-cavity of the ephyra are, however, derived from the tæniolæ of the scyphostoma. These soon disappear, and the central stomach of the medusa is a simple lenticular space
The forms of Chrysaora are so imperfectly separated one from another that were it not for the fact that many minute distinctions have been pointed out between them, I would greatly prefer to consider them all to be one variabie species, C. hysoscell
However, we may possibly distinguish more or less vaguely:
C. hysoscella=C Mediteratea with its varieties blossevillei and plocamia (?)
of the Atlantic, Mediterranean, and South Pacifc.
C. helvolaa, with ith its varieties calliparea, and chinensis of the Pacific and
Indian oceans.

Indian Oceans.
C. meelanaster with its variety gilberti of the North Pacifc.
I believe that a study of the following synoptic table will which defy classification convince one that we have here only one species, the varieties of

Synopsis of the "Species" of Chrysaora

	C. mediterranea Péron et Lesueur $=$ C. hysoscella.*	C. hysoscella Eschscholtz. \dagger Identical with C. mediterranea.	C. blossevillei Lesson, a variety of C. hysoscella \ddagger	C. fulgida Haeckel= Rizostoma fulgidum Reynaud; a variety of C. hysoscella.
Shape of disk. Width of disk in mm . Height of disk in mm .	Flatly rounded. 100 to 300 40 to 80	Flatly rounded. 100 to 200 40 to 60	Nearly hemispherical. 100 40	Hemispherical. 300 to 400 100 to 200
Shape of marginal lappets.	Flatly rounded. The I6 ocular lappets only half as wide as the I6 tentacular lappets. tentacur lappet.	All semicircular and of equal width. The 16 ocular lappets project more than the 16 tentacular lappets.	All half-egg-shaped (oval). Ocular and interocular clefts about twice as deep as clefts which alternate with them.	All alise. Semicicrular
Shape of the 8 ocular stomach-pouches.	At periphery of central middle three-fourths, a margin half as wide as tentacular pouches.	In middle, the 8 ocular pouches are same width as 8 interocular. At bell-margin, ocular third as wide as tentacular pouches.	In middle, ocular pouches are equal to tentacular pouches in width. At margin, ocular pouches àre onl half as wide as the tentacular.	?
Shape of curtain-like lips.	Tapering from base to pointed ends. Edges are curtain-tike and very complexly folded.	Tapering from base to pointed ends. Edges very much folded.	Lancet-shaped. Tapering with folded margins	Lancet-shaped, widest in middle where they are as wide as 0.5 F .
Length of mouth curtains (lips) in terms of disk-radius r.	3 to $4 r$	$2 r$	$2 r$	4 to 6 r
Length of longest tentacles in terms of disk radius r.	$2 r$	${ }^{2 r}$	T	r. Reynaud figures only if tentacles.
Color.	Variable. Disk is whitish to yellow. Usually there is a reddish ring around apex, and radiating from this 16 radial streaks	Variable, and similar to C.mediterranea, but usually more intense.	Bell amber to rusty in color. Mouth-arms rusty-yellow.	Bell yellowish-brown Radial streaks and marginal lappets red-dish-brown. Mouthcarmine.
Where found.	Mediterranean.	Atlantic coasts of Europe.	Coast of Brazil, Island of Santa Catharina to Pernambuco.	Cape of Good Hope, False Bay, Algoa Bay, Africa.

*Development through alternation of generertions with strobilization (Claus).
\dagger Development as in C. mediterranea. Haeckel found a specimen 160 mam. wide, with 40 tentacles, and 48 marginal lappets
as in Dactylometra.
Tone of Vanhöfen's specimens had 4 tentacles in one octant. See also L. Agassiz, 1862, Cont. Nat. Hist. U. S., vol. 4, Pp. 127, t 66 .

Chrysaora hysoscella Eschscholtz

Chrysara cyclonana, aspizonota, spiliogona, spilhemizgona, pleurrophora,

For a synopsis of the characters of C. hysoscella, see table of characters of Chrysaora. There appear to be no definite distinctions between Chrysaora "mediterranea" of the Holland, and in the entrance to the Baltic Sea. It is probable that the Chrysaora of the Chesapeake Bay, in America, is identical with that of Europe, but I believe the Chesapeake medusa to be only a brackish-water variety of Dactylometra quinquecirrha, which become mature in the 24 tentacle stage. Judging from Haeckel's figures the Mediterranean medusa is more highly colored than that of the northern shores of Europe. In the Chesapeake the

	C. plocamia Haeckel, a variety of C. blossevillei.	c. helvola Brandt.	C. calliparea Haeckel, a variety of C. helvola.	C. chinensis Vanhöffen, a variety of C. helvola.	C. melanaster.* See C. gilberti Kishinouye
Shape of disk.	Hemispherical.	Hemispherical, or flatter. Exumbrella smooth.	Flatly rounded to hemispherical.	Flatly rounded to hemispherical.	Hemispherical or
Width of disk in mm.	85 to 100	100 to 300	160	70	200
Height of disk in mm.	40 to 50	50	50 to 100	30	100 to 150
Shape of marginal lappets.	$\begin{aligned} & \text { All alike. Semicir- } \\ & \text { cular. } \end{aligned}$	Oval. The adradia clefts between tentacular lobes are deeper than others outline of each octant to be convex.	Kidney-shaped, wider outward than at bases. The 16 ocular lappets wider and longer than the 16 tentacular lappets.	Lappets longer than wide, triangular with blunt points.	Tongue-shaped, narrower at base than beyond this point. All oren equa size. When old, the 16 ocular lappets develop side Dactylometra.
Shape of the 8 ocular stomachpouches.	All 16 radial- pouches of equal width in middle At margin ocular wide as tentacular pouches.	Ocular pouches are in middle twice as wide, at the margin half as wide, as tentacular pouches.	Ocular stomachpouches spindleshaped. In middle as wide as tentacular pouches.	Twice as wide in middle; at margin, half as wide as tentacular pouches.	Ocular and tentacu lar pouches of similar form and size.
Shape of curtainlike lips.	Curtain-like, folded In middle as wide as radius of um brella.	Lancet-shaped, in middle two-thirds as wide as disk- radius. Margin complexly folded.	Curtain-like, very wide and long.	$\begin{aligned} & \text { Curtain-like. In } \\ & \text { middle as wide as } \\ & \text { radius of umbrella. } \end{aligned}$	Tapering from a wide base to pointed ends. In middle one-third r much folded.
Length of mouthcurtains (lips) in radius r.	3^{r}	4^{T}	6 to 8 r	$7{ }^{7}$	$2 r$
Length of longest tentacles in terms of disk-radius r.	$2{ }^{2 r}$	Flat, ribbon-like. 4^{r} Iong.	Ribbon-like at their bases $2 r-$? .	Ribbon-like r -
Color.	Bell rusty-yellow. Mouth-arms color less, with yellow margins. Tentacle red.	Bell and lips light yellowish-brown, with marginal lappets and mouth-rusty-red. Tentacles dark rusty color.	Ground color of umbrella bright red-dish-yellow, with a brown star on exumbrella. Lappets brown. Moutharms yellow, spotted with brown Gonads yellow.	$?$	Bell, mouth-arms, and tentacles lightbluish. 32 star- like brown rays on. exumbrella. 16 dark-brownish to black radial streak radii of 16 lateral tentacles. Gonads reddish-brown. - .
Where found.	West Coast of South America. Саре Horn to Peru.	North Pacific Ocean Asia to California.	Indian Ocean to east coast of Africa.	Southern parts of the China Sea.	North Pacific. Asia to California.

*This species shows a tendency to approach the Dactylometra stage in having 48 marginil lappets, but the tentacles remain
4 in number as in other species of Chrysara. L. Agassiz, r862, calls this Melanastet merrensiit.
medusa is highly variable in color, sometimes pale, nearly uniform, milky ocher-yellow, and at other times with radiating streaks of rich red-brown.

The medusa is locally common but rare in many other places, such as Naples, where it is hardly ever seen.

According to Graeffe, C. hysoscella is found at Trieste, Adriatic Sea, from November to April, and is mature in winter. It is hermaphroditic, and the eggs segment in the ovaries and are set free as pear-shaped planulx in March and April. At the end of 8 to 14 days they become These strobilate in September and October and each gives rise to 8 to 12 ephyre.

Miss M. J. Delap finds that the scyphostoma of Chrysaora does not eat copepods or small fish, but feeds voraciously upon hydromedusx, siphonophorx, ctenophoræ, and pelagic worms Claus, 1877, has studied the growth of the ephyra. At first the 8 ephyra lobes are very long and slender with deep, adradial clefts between them and with sharp-pointed, marginal lappets. There ane the Pelagia-stage. The first 4 tentacles are in the 4 adradial clefts which precede the 4 perradii in the direction of the hands of the watch (see text-figure 372). The adradial stomach-pouches develop later than the perradial and interradial.

The hermaphroditism of Chrysaora was first observed by Derbés (i850, Annal. des Sci Nat., tome 13, P. 377) and later by Wright (1861), Claus (1877), and Faeckel (1880). Young individuals are apt to be male, middle-aged ones hermaphroditic, older ones female. Some are, however, of one sex only throughout life. In other cases when the production of eggs in the entoderm of the gonads begins to decline, a number of sac-like cavities, of irregular size, develop not only in the gonads but in other parts of the subumbrella wall, and these give rise to spermatozoa.

Chrysaora hysoscella var. blosseville

This is closely allied to C. hysoscella, of which it is probably a local variety.
Disk 28 to 37 mm . wide, or larger, and about 7 to to 9 mm . thick. Exumbrella covered with small, round, nettling warts. According to Vanhöffen' there are 4 marginal lappets in each octant between successive sense-organs. The 8 interocular clefts are twice as deep as are the 16 clefts adjacent to them. The longest tentacles arise from the interocular clefts.. These are about as long as bell-radius.' The 2 other tentacles in each octant are only half as long as the interocular tentacles. There are thus 24 tentacles, 32 lappets, and 8 marginal senseorgans. 16 radial pouches extend out from the central stomach and these are twice as wide at margin in the interocular as in the ocular radii. The palps are shorter than bell-diameter Bell and palps yellowish, speckled with rusty-red. Coast of Brazil. Best description by Vanhöffen.

Chrysaora hysoscella var. fulgida.

 Sion Faldivia, Bd. 3, Lfg. I, P. 38 .
tion
See synoptic table of forms of Chrysaora
Thi form is me identical with C. hysoscella. It is found of the Cape of Good Hope, Africa.

Chrysaora blossevillei var. plocamia.
 See synoptic table of forms of Chrysaora.
This form is found on the South Pacific coast of South America from Peru southward, and is allied to C. blossevillei of the Atlantic side. Its marginal lappets are said to be semicircular instead of oval as in C. blossevillei, and the contour of the bell-margin is circular, not octangular with concave inter-rhopalar sides. It is only misleading to attempt to separate pecies upon distinctions such as these.

Chrysaora helvola Brandt.
Chrysaora (Polybostry chà) helvola, BRandx, 1838 , Mem. Acad. St. Petersbourg, Sci. Nat., sér. 6, tome 4, P. 384, taf. 15, fign. 1-4.

See synoptic table of the species of Chrysaora.
Distinguished by the considerable length of the 16 ocular lappets, which project beyond the zone of the velar ones, thus giving an octangular appearance to marginal outline of bell. The medusa is found in the North Pacific from Asia normand to
his medusa. He gives good figures of it showing the considerable depth of the adradial clefts between the lappets.

Chrysaora helvola var. calliparea.

(?) Cyanea calliparea, Rexvavd, 8830 , Lesson's Centurie Zoollogique, p. 67 , planche 20 .
Chryysoora calliparea, Haccxxr, 8880 , Syst der Medusen, p. 516 .
See synoptic table of forms of Chrysaora.
This medusa is reported from Pondichery and Zanzibar, and our knowledge of it is still imperfect
Chrysaora chinensis, VANBöFFRN, 1888, Bibliotheca Zoologica, Heft. 3, p. 16
In the single specimen described by Vanhöffen the disk is 70 mm . wide and 30 mm . high. Exumbrella thickly covered with numerous, very small warts arranged in a scale-like manner Exumbrella thickly covered with numerous, very small warts anargin. Ocular and tentacular marginal lappets of equal width and length, longer than wide, and each one ends in a blunt point; lappets overlap each other on their sides and this causes the ocular lappets to appear smaller and sharper than the tentacular lappets. The i6 radiating stomach-pouches are all of equal width at periphery of central stomach. The septa bordering the 8 ocular pouches trend so as to become wider apart for the proximal three-fourths of their lengths, so that the ocular pouches are about twice as wide as the tentacular ones at this zone. The septaithen trend toward the ocular radii so that at the bell-margin the 8 ocular stomach-
pouches are only half as wide as the 8 tentacular ones. The 4 lips, or palps, are each 7 times as long as the radius of the disk. Near the mouth-opening they are almost as wide as bell-radius and are curtain-like. Midrib of each mouth-arm well developed, the folded margins thin. Outer parts of palps about one-third a's wide as bell-radius, not tapering outwards, but ending
bluntly. Color (?) Gonads (?) Tenta cles (?) Found rear Hongkong, China, in October.

This form is distinguished by its peculiar exumbrella warts and its very
long mouth-arms. It is separated from
Fir. 366 .-Chrysaora helvola, according to B Chrysaora calliparea by its long, pointed, marginal lappets.

Chrysaora melanaster Brandt.

See synoptic table of species of Chrysaora.
This abundant North Pacific form is found from Kamtschatka to California. Bell with reddish-brown radial lines extending from center to margin. Marginal sense-organs bright yellow and brown. Tips of tentacles are red. When old it develops 48 lappets, but the tentacles remain 32 . It is closely allied to Dactylometra quinquecirrha of the North Atlantic, and C. gilberti is one of its varieties.

Chrysaora melanaster var. "gilberti" Kishinouye

Chrysaora gilberti, Kisurnouri, r899, Zool. Anzeiger;,Bd. 22, P. 44, x fig.
Distinguished by its semicircular lappets all similar each to each and its relatively long tentacles. It is probably only a variety of C. melanaster.

Umbrella 70 to 100 mm . wide, 25 to 30 mm . high. Exumbrella thickly besprinkled with nematocyst-warts. 32 marginal lappets, all similar each to each and all nearly semicircular. 24 laterally compressed tentacles, all somewhat longer than bell-diameter. The 4 subgenital ut the ocular pouches are a little broader than the tentacular pouches at the annulus of the marginal sense-organs. The 4 oral curtains are as broad as the bell-radius near the mouth and are very long with finely frilled margins. In contraction they are coiled, screw-like; and in this condition are about as long as bell-radu.
hick proximal parts are covered with nettle-warts
of mouth-arms darker brown. Common

Genus DaCtylometra L. Agassiz, 1862.

The . . D.
malies and South American

$$
\begin{aligned}
& \text { Ihe type species is } D \text {. lactea L. Agassiz, of the West Indies and south American } \\
& \text { generic characters. }
\end{aligned}
$$

Pelagidæ with 40 tentacles, 5 between each successive pair of senseorgans, and with 48 marginal lappets.

367.

Fic. $367 .-$ Chryssara melaraster, acording to Brandt, after Vanho
Ftr. ${ }_{3} 68$. Chrysaora ailberti, after Kishinouye, in Zool. Anzeiger.
There is reason to believe that certain medusæ may become mature with 24 tentacles, while others, possibly better fed individuals of the same species, may develop 40 tentacles before becoming mature. Similarly Dactylometra longicirra of Japan may develop 40 or even 56 tentacles before becoming mature. The conditions characteristic of the genera Chrysaora, Dactylometra, and Kuragea may therefore be transitional stages in the growth of one and the same medusa.

Dactylometra lactea L. Agassiz

Mature medusa.-Bell hemispherical, smaller than in D. quinquecirrha being about 70 mm . in diameter. Clefts in lappets adjacent to sense-organs fully as deep. as those betwee the remaining lappets instead of being mere shallow notches, as in D. quinquecirrha. The tertiary tentacles arise from clefts. between the lappets, not from the floor of the subumbrella as in D. quinquecirrha. The 8 primary tentacles are about 3 times as long as the bell-diamete The 16 secondary the long the primary ones.

General color dull milky-white, exumbrella sprinkled over with ocher-yellow-colored spots, thickly clustered at aboral pole. Genital organs slightly yellowish, a delicate iridescence over the long, flexible mouth-arms.

This species is found at Rio Janeiro, Brazil, and at Jamaica and Cuba. In Havana Harbor it is abundant and mature in February.

A mature specimen found by me off Port Royal, Kingston

Octant No.	No. of tentacles.	No. of lobes.

$$
\text { Plates } 62 \text { to } 64 \mathrm{~A} \text {. }
$$

Pelagia quinguecirrha, Disor, E., 1848, Proc. Boston Soc. Nat. Hist, vol. 3, P. 76 .

 P. 2, plate I.
Chrysara, Brexiow, R. P., I880, Johns Hopkkins Univ. Circulars, vol. 9, No. 8, p. 66 (brackish-water variety from Chesapeake Bay).
Adult medusa.-Bell nearly hemispherical, 170 to 190 mm . in diameter. Numerous small, wart-like clusters of nematocysts thickly scattered over the exumbrella, especiall abundant at aboral apex where they appear as little hemispherical projections above the general surface; near the margin they are elongate in shape, while at the margin itself they

Fiss. 370. Dactylometra lactea from Havana, Cuba; after Agassii and Mayer in Bull. Mus. of Comp. Zool.
are again hemispherical as at the apex. 8 marginal sense-organs, 40 tentacles, and 48 marginal lappets. The marginal sense-organs are set within niches between the lappets, 4 being per radial in position and 4 interradial; these niches are protected above by a small web between the lappets. A ciliated, pit-like depression extends downward from the surface of the ex umbrella immediately above each sense-organ. The sensory-club projects slightly downward and contains a distal, entodermal mass of crystalline concretions but no ocellus. The entodern There are 5 tentacles medusa.
the primary and secondary, arise from the cessive pair of sense-organs. 3 of these tentacles are generally found to spring from the under or subumbrella side of the ocular lappets; fo even in very large medusæ the ocular lappets exhibit but a slight notch adjacent to the ter-
tiary tentacles; in fact, the tertiary tentacles do not usually make their appearance until the medusa is about 130 mm . in diameter and the lappets remain undivided until the medusa is mature, although Hargitt shows that this is subject to great individual variability. Thus is mature, although Hargitt shows that this is subject to great individual variability. Thas
in immature medusæ of large size there are usually but 24 tentacles and 32 marginal lappets, and the animal is in the "Chrysaora stage." I believe, also, that they often mature in this stage and never reach the Dactylometra condition.
The primary and secondary tentacles are very long and flexible while the tertiary tentacles are only a few millimeters in length. In like manner the lappet-clefts of the primary and secondary tentacles are deep and the lappets almost as long as they are broad; while the lappet clefts of the tertiary tentacles are mere shallow notches in the contour of the lappets of a 4 -cornered oesophagus and surrounded by 4 mouth-airms or palps, which when fully extended are about 3 or 4 times as long as the bell-diameter. The 8 free edges of the moutharms are complexly crinkled and highly flexible. The central stomach occupies a wide lenticular space in the midst of the bell and gives rise to 16 simple, radiating pockets, 8 in the tentacular and 8 in the rhopalar radii. These pockets are completely separated one from another by 16 radiating septa which join the upper and lower walls of the umbrella cavity

Fic. 371- - Dactylometra quinqueciritha, after Agassiz and Mayer, in together. The tentacles are hollow hroughout the greater part of their ength and their entoderm is ciliated
The ofads are contained
The gonads are contained in 4 foldings of the wall of the subumbrella, and their position is marked by 4 deeply sunken, subgenital pits. The genital organs are provided with numerous, simple, unbranched gastric cirri which project inward two sets of radial muscle-fibers; the principal set is found in the 16 septa between the gastric pouches, and alternating with these in position are 16 strands in the exumbrella, 8 of which lead outward to the senseorgans and 8 to the primary tentacles. Color quite variable. In some yellow with a bluish opalescence. The exumbrella is'thickly sprinkled with yellow-ocher colored nettling-warts and there are 16 radiating stripes of reddish color upon the exumbrella in the radii of the septa of the peripheral stomach. These reddish stripes extend about half-way from the bell-margin toward the center of the exumbrella and are due to highly refractive, rosin-colored pigment granules within the epithelial cells of the disk. The male gonads are generally pink, while the ovaries are yellowish or ashy-gray. The radial muscle-strands of the subumbrella are of a glistening white and the entodermal cores of the tentacles are pink. The mouth-arms are pink or yellow and always sprinkled over with red-colored pigment spots. The marginal sense-organs contain each a mass of glistening white concretions, but no ocelli.
This species extends from the southern coast of New Enoland to the tropics. In August
This species extends from the southern coast of New England to the tropics. In August it is abundant in Tampa Bay, Florida. It has been taken by Bickmore at the Bermudas, was found by Brooks at Beaufort, North Carolina, and is figured in plate 64 A . It makes its appearance upon the surface along the coast of New England in August when large meduse are found. The young rarely come to view, but remain in deep water
Varieties and development.-The egg develops into a free-swimming planula which soon attaches itself to the bottom and develops into a scyphostoma having normally 4 ten-
tacles. R. P. Bigelow, 1880, states that the so-called "Chrysaora" of the Chesapeake, which is only a brackish-water, abortive variety of Dactylometra, develops from an ephyra through a
Pelagia stage, wherein it has only 8 tentacles and 16 lappets, and Brooks has figured the ephyre Pelagia stage, wherein it has onl
the text frgures here shown. Roads and Norfolk Harbor, Virginia, and in St. Mary's River, Maryland, early in Novem-

Fic. 372.-Y Young epayxx of Dactylomerra quinquecirrha. Figures drawn by the late Prof. William K. Brooks at the Chesapeake Bay Laboratory of the Jobns Hopkins University. Pr
Ogy of the Johns Hopkins University for publication in this worl.
ber, 1904 and 1905 . These were generally pale milky-yellow in color and lacked the rich brown pigment and the 16 pigmented, radial areas seen upon the exumbrella of Dactylometra quinquecirtha. Others had a red-brown spot at the apex of the exumbrella, and surrounding
axial ribs of the mouth-arms (palps) were red-brown. Although all were in the Chrysaora condition and had only 3 tentacles and 4 lappets in each octant, some appeared to be fully mature or with gonads nearly ripe. The exumbrella surface and the palps were covered with dull milky-yellow clusters of nematocysts. There were 8 marginal sense-organs as in Dactylometra, but only 24 tentacles and 32 marginal lappets. None of the meduse were, Chrysaora-like medusa seen in Norfolk harbor being only 105 mm . in diameter. It should be borne in mind that D. quinquecirrha does not usually attain 48 marginal lappets and 40 tentacles until the medusa is 20 mm . in diameter, and it seems therefore that the so-called Chrysaora of the Chesapeake is only a stunted Dactylometra which becomes mature in the Chrysaora stage, and its pale coloration may be a local peculiarity due to unfavorable conditions of confinement in brackish water. In the purer ocean water at the mouth of Chesapeake Bay the medusæ develop into the Dactylometra condition with 40 tentacles. These conditions are also found in Narragansett Bay, Rhode Island, where in relatively pure clean water the medusæ have 40 tentacles, but in brackish estuaries they often become
mature with only 24 tentacles and are pale in color.

Dactylometra africana Vanhö̈fen.

Disk 100 to 130 mm . wide. 6 well-developed marginal lappets and 5 long tentacles in each octant. Lappets and tentacles red. Red radial streaks over exumbrella. Esophagus, palps, and gonads not highly colored. Colors of large specimens duller than those of small Coast of German Southwest Africa Common in the Great Fish Bay on October 10 , 808.

Dactylometra ferruginaster Kishinoute

 fig. 14.
Bell fatly rounded, 3 to 4 times as wide as high, 100 mm . in diameter. 48 oval, marginal Bell fatly rounded, 3 to 4 times as wide as high, 100 mm . in diameter. 48 oval, marginal
lappets. The 8 primary tentacles longer than the others. The lappets next to the ocular
appets are the smallest, and only about half as wide as the others. The i6 radial stomachpouches of nearly similar form and size. Mouth-arms longer than bell-radius and tapering to pointed tips. Bell white with reddish-brown star on exumbrella. Inner sides of moutharms and tentacles brown. Found on the coast of Japan in autumn. This form is imperfectly separated from D. quinquecirrha of whi dentical with the American medusa

"Dactylometra longicirra" Kishinouye

Dactilometra quizquucirirha var. pacififca, Gorrxr, , I866, Sitzungsber. Akad. Wissen. Berlin, Jahrgang 1886, p. 834 .
Bell flatly rounded, 3 times as wide as high and 75 mm . in diameter. 48 tongue-shaped marginal lappets, all similar each to each, somewhat narrower near their bases than near heir outer ends. Accessory lappets sometimes seen on sides of ocular lappets. 40 tentacles of nearly equal length each to each, and ro times as long as bell-diameter; these tentacles re wide, flat, and ribbon-like near their bases; sometimes one finds small accessory tentacles umbrella surface of the ocular lappets. The medusa then has 56 tentacles 7 in the subas in Kuragea depressa of Japan, and this illustrates the close genetic relationship which exists between the two forms. In the middle the ocular stomach-pouches are twice as wide and in their distal parts half as wide as the tentacular pouches. The mouth-curtains are very wide and much folded; they are about 5 times as long as bell-diameter

Bell white with 32 reddish-yellow radiating streaks. Mouth-arms yellow. Gonads and
acles reddish. entacles reddish.

Found on the Pacific coast of Japan, in Owari Bay. Its common "Japanese name is Aschinaga Kurage, or Akakurage. I am inclined to believe that this is only a growth-stage of

Genus KURAGEA Kishinouye, 1902.
Kuragea, Kishinouve, y902, Journ. College Sci. Tokyo, vol. 17, art. 7, P. 9, plate I, fig. 7.

The type species is K. depressa of Japan.

generic characters.
Pelagidæ with 8 marginal sense-organs. 8×7 (56) tentacles. $8 \times 8(64)$ marginal lobes. 4 interradial gonads.

This genus bears the same relation to Dactylometra that the latter does to Chrysaora, being a stage wherein the lappets and tentacles have progressively increased by 16 in number. Thus Chrysaora has 24 tentacles and 32 lappets, Dactylometra has 40 tentacles and 48 hypertrophic Dactylometra rather than as a separate genus.

Kuragea depressa Kishinouye

Umbrella 85 mm . wide and 30 mm . high. 8 marginal sense-organs. $8 \times 7(56)$ tentacles. 8×8 (64) marginal lobes. 4 gonads, each folded in the form of the Greek letter ω. Gastric filaments long and numerous. Color (?) Misaki, Japan. A single specimen.
號 and the lobes by the sides of the adradial tentacles are larger than the others, while those adjacent to the ocular
lobes are the smallest. The lips are broad and complexly folded. The exumbrella exhibits a 16-rayed, star-shaped marking in the inter-radii, adradii, and perradii. The central stomach gives rise to 16 peripheral pouches as in Dactylometra
longicirra. In the middle of their lengths the 8 longicirra. In the middle of their lengths the 8
rhopalar pouches are I. 5 times as wide as the 8 tentacular pouches, but at the bell-margin only half as wide.
This medusa is clearly derived from Dactylometra longicirra of Japan. D. lactea of America tends to attain to
equally (see text-fig. 369).

Genus SANDERIA Götte, I886.

The type species is Sanderia malayensis Goette, of the tropical Indian Ocean and Malay Archipelago.

> generic characters.

Pelagidæ with 16 marginal sense-organs, 16 tentacles, and 32 cleft marginal lappets. 4 lips, 4 interradial gonads, and 32 peripheral stomach-pouches in the radii of the tentacles and sense-organs. No marginal ring-canal.

Sanderia malayensis Goette.

Bell flat, 90 mm . wide, large, rounded nettling-warts at the center of the exumbrella but diminishing in size outwardly so as to be absent at the bell-margin. I6 marginal sense-organs

alternating with 16 long, ribbon-like tentacles, 32 cleft lappets. A long, tubular cesophagus is bounded on the 4 perradial corners by long, complexly folded lips. The 4 interradial, heartcentral stomach gives rise to 32 peripheral pouches in the radii of the sense-organs and tentacles. These are completely separated one from another by straight, radiating septa which converge lightly near the bell-margin in the rhopolar radii. There is no marginal ring-canal. The genral color is yellow with the aboral center of the bell dusted over with reddish flecks which extend outward, spoke-like, in the radii of the sense-organs and tentacles. The mouth-parts
are also covered with reddish spots.

Found in the Indian Ocean, Gulf of Aden, at Singapore, and off the east coast of Africa. Some specimens of this medusa were found by the U. S. Fisheries Bureau Steamer Albatross in the Philippine Islands in March and April, 1908, and Kishinouye found it at Misaki, Japan

A perfect specimen found by the Albatross on March 8, 1908, at station D 5 175 in the Sulu Sea, southeast of Cagayanes Islands, Philippine Islands, had a bell 75 mm .wide, palps 46 long entral stomach 35 wide, contracted te Kishinouye
irregularly developed gonads. He found that a fish of the genus Psenes accompanied the medusa.

Family CYANEIDEE L. Agassiz, 1862

family characters.

Semaeostomex with a single, 4 -sided, central mouth surrounded by 4 perradially situated, curtain-like lips. The tentacles arise from the floor of the subumbrella, at some distance inward from the margin, and are usually in clusters. The gonads are situated in 4 complexly olded, interradial outpocketings of the wall of the subumbrella. The central stomach gives rise to radiating, peripheral pouches, which in turn give rise to numerous branching, nonThe medusx of this family are apparently descended from some such forms as the Pelagdx. They resemble the Pelagidx in the structure of the oral appendages, the general plan of the gastrovascular system, and in the lobulation of the bell-margin. They differ mainly in the complex branching of the peripheral edges of the radiating stomach-pouches, and above all in that the tentacles arise from the floor of the subumbrella, not from the notches between the lappets as in the Pelagidx. The young medusæ are strikingly similar to the Pelagidx in all respects, for their radiating stomach-pouches are simple and the tentacles first appear in the notches between the lappets. The margin grows beyond the bases of the entacles as development proceeds, however, and thus they come secondarily to arise from he floor of the

$$
\text { In } C \sim a
$$

In Cyanea the development is known to be through a sessile scyphostoma which strobiates, giving off a number of ephyræ which develop into mature medusx. The Cyaneidx are of universal distribution, but the great majority of the species are found in the temperate regions and in the colder waters. Unlike the Pelagidæ the Cyaneidæ are creatures of the shallower waters along shores, not animals of the high seas

A synopsis of the genera of the Cyaneidæ follows:
Desmonema L. Acassrz, 1862.8 rhopalia, 8 adradial clusters of tentacles. No radial-muscle strands in the subum-
brella.

muscies in the subumbrella.
Drymonema Hazcrxx, 888 . 8 rhopalia. Tentacles not grouped in isolated dusters, but arising from a wide zone in

Genus DESMONEMA Agassiz, 1862.
Couthouyia, used for Mollusca by Adams, 8660 , Annal. and Mag. Nat. Mist., vol. $5, \mathrm{p} .41 \mathrm{C}$.
 and
and

Cyaneidæ with 8 marginal sense-organs and with 8 adradial clusters of marginal tentacles. The tentacles of each cluster may arise in several rows from the subumbrelia surface. The

The names Couthouyia and Medora are preoccupied, but Agassiz's Desmonema may be used. The oldest species is the little-known "Chrysaora" gaudichaudii erroneously described by Lesson, I829 (Voyage de la Coquille, Zooph., p. 1I4), from the region of Cape Horn, South America, and recently revealed through the studies of Maas, I 108.

Some of the medusx which Haeckel included in his genus "Desmonema" represent only immature Cyaneas in which the tentacles of each cluster arise in a single row. Vanhöffen, I888,

Frc. $\mathbf{3 7}^{76} . \sim$ Desmonema gaudichaudii, after Maas, in Meduses Expedition Antarcticque Francaise.
shows, however, that there are considerable anatomical differences between Cyanea in any stage and Desmonema. In Desmonema, for example, the 8 clusters of tentacles arise in linear arcs concentric with the general contour of the bell-margin, whereas in Cyanea they arise in
crescents, the horns of which are directed outward toward the margin. Moreover, there are no radial-muscle strands in the 8 velar lobes of Desmonema, but these are found in Cyanea: Desmonema annasethe Haeckel is clearly a young Cyanea, as was pointed out by Vanhöffen, 1888.

The rediscovery of Lesson's, Cape Horn, medusa by Maas makes it practically certain that it is specifically referred to by Agassiz, 1862, p. II8, under the designation Couthouyia pendula.

Demonema gaudichaudii Agassiz.

Chrysaora gaudichaudiz, Lrsson, r829, Voyage de la Coquille, Zooph., p. rif, Zoophytes planche I3, fig. I.

Bell at least 500 or 600 mm . wide, only 5 to 7 tentacles in a single line, in each interrhopalar cluster. Thus when the medusa is of a greater size than D. chierchiana, it has fewer entacles. Maas states that the color of the gastric cavity is brownish-purple, accentuated transparent. The medusa is found in the Antarctic region in April. Future studies will probably demonstrate that D. chierchiana is only a variety of this medusa for they are alike in all respects excepting that in Desmonema chierchiana the tentacles arise in several rows, whereas in D. gaudichaudiz they remain as a single row even when the medusa is much larger han D. chierchiana. This difference may be due to environmental causes, or may be of the nature of a variation such as one observes in the development of tentacles in Dactylometra and Chrysaora, but until further studies have been carried out it will be safer to keep the a variety in which the tentacles remain in a single rows as in the young of D. chierchiana (see fig. 376).
Further details of the structure of D. gaudichaudii may be obtained from the description of. chierchiana which follows.

Agassiz's Medora capensis is apparently a young stage of this medusa.

Desmonema chierchiana Varhöfen.

 vol. 46 , p. 244, plate 2 , fig.

Umbrella 310 mm . or more wide and 100 mm . high. Exumbrella smooth. The 8 pairs of ocular lappets are only about one-third as wide as the 8 tentacular lappets, which are flatter than a semicircle in outline. The I6 small, ocular lappets are bluntly rounded and sharply set off from the 8 tentacular lappets: The subumbrella is divided into i6 equal sectors corresponding to the 16 stomach-pouches. These sectors are areas in which the circular muscles are well developed and separated one from another by narrow septa. 8 of the 16 muscular sectors are in the radii of the 8 marginal sense-organs and 8 are intermediate. There are no adial-muscle strands.

There are 8 groups of tentacles, each of which, in old medusæ, arises in several rows fom the subumbrella at some distance inward from the bell-margin. These tentacles are about 60 tentacles in each cluster, the oldest and longest being along the innermost, and the hortest and youngest in the outermost rows. The rows are not U-shaped, as in Cyanea, but are nearly straight. The tentacles are hollow, their entoderm being thin and the ectoderm hick-walled. When young the tentacles are somewhat flattened and the ectodermal longitudinal muscle strands are set within infolded, gutter-like lines down the length of the tentacle. As growth proceeds these gutters sink deeper and deeper into the ectoderm and finally become inclosed tubes, sunken beneath the surface. Thus the longitudinal muscles become tubular strands of fibers. A full description of the tentacles is given by Vanhöffen, igo8.

The 4 mouth-curtains are well-developed and resemble those of Chrysaora.
rrow near the mouth-opening but expand outwards and then taper gradually to they are Each mouth-curtain is I .5 times as long as the bell-radius and its margins are much folded.

The 4 sac-like, protrusive gonads are folded and resemble those of C yanea, but are smaller.
There are 16 sectors of circular muscles in the subumbrella, 8 in the ocular and 8 in the interocular radir. These circular muscles do not extend beyond the zone of the clusters of tentacles and sense-organs and are not found in the subumbrella of the lappets. There are no strands of radial-muscles in the subumbrella, or in the lappets, such as are seen in Cyanea.

The 16 stomach-pouches break up into numerous forked, branched, radiating vessels in the marginal lappets, but their ultimate branches rarely anastomose. There are about I2 to 18 main branches from the outer edge of the stomach-pouch in each lappet and these
branch dendritically so that about roo ramuli reach the bell-margin. There is no marginal ring-canal.

Fig. 377.-Desmonema chierchiana, after Vanhöffen, in deutsch. Südpolar Expedition.
The medusa is salmon-red or brownish-red, the canal-system being darker and the tentacles light in color. When young the bell and tentacles are bluish and the curtain-like lips salmon or brownish-red in color

The medusa appears to be common from December to June in the Antarctic region, and is reported from both sides of the Straits of Magellan, Kerguelen, and the Falkland Islands; and from Kaiser Wilhelm Coast, South Victoria and Alexander I Land along the ice-edge
Ephyræ 3 to 10 mm .
Ephyræ 3 to 10 mm . wide are found in January and February, and Vanhöffen records a young medusa in the M edora stage from Gauss Station, Kaiser Wilhelm Land on April I4. tentacles about two-thirds as long as bell-diameter, and 4 mm . long. These were 8 principal by a small tentacle of recent development, figure 379. The lips and gastric cirri were brownish-red, other parts being translucent milky-blue. A later stage is described by Browne (see figure 37^{8}).

Genus cyanea Peron and Lesueur, 1809.

The type species is C. capillata of the North Atlantic, Pacific, and Arctic Oceans. It is the largest of all known medusx.

generic characters.

Cyaneidx with 8 marginal senseorgans and with 8 adradial crescentic groups of tentacles. Each group consists
of several rows of tentacles. With radial muscle strands in the subumbrella.

When young only 8 simple tentacles arise in the adradial clefts between the ephyra lobes, but later the margin grows beyond them; leaving them to project from time the tentacles increase in meanbecoming a row in each adradius, but finally they come to lie in two or more rows. Haeckel has constituted a special genus for each of these growth-stages. He calls the 8 -tentacled stage " Procyanea." The stage with 24 tentacles, 3 in each adradius, he names "Medora," and when there are 5 tentacles in each row the medusa becomes a Stenoptycha"; then as long as
the medusa remains with the tentacles of the medusa remains with the tentacles of
each cluster in a single row it is a "Desmonema," and finally when older and the
379. tentacles begin to develop in two or more rows in each cluster the medusa is called a
Cyanea. It is possible that some medusæ may become mature in, and never advance beyond, Haeckel's "Desmonema stage,"

 Medusx of Cyanea are abundant in the Arcic-stage for development, they are confined to the proximity of coasts where the water is relatively shallow.

The early development of the planula takes place among the folds of the copious mouth curtains of the adult medusa. Segmentation is total and regular but unequal, the cells of one pole being smallest. The gastrula results from simultaneous delamination and invagination at the small-cell pole. The blastopore closes. The planula attaches itself by its forward end and becomes a scyphostoma which acquires 15 to 20 tentacles and strobilates producing ber of ephyrx. The details of this development are given under C. capillata,
It appears that the numerous so-called species of Cyanea intergrade to such a degree north temperate and Arctic regions and C. annaskala of the south temperate and Antarctic In common with Pelagia, Chrysaora, Dactylometra, Aurellia and other world-wide forms of medusæ, growth-stages, color varieties and local races have frequently been described as separate species, but as our knowledge increases many intergrading forms come to light thu reducing the so-called species to a few dominant types with numerous, closely related offshoots, It is unfortunate that the aim of the old systematic zoology was mainly toward the emphaCyanea is readily distinguished from Desmonema by its radiating muscle strands in the subumbrella, and its horse-shoe shaped clusters of tentacles.

Cyanea capillata Eschscholtz.
Plate 65 , figs. 3 and 4.

 Comp. Zol. Sat Harrard Coliege, vol. . . No. 8

 574 (varatiation

 Anate and Physiol., vol. 15, P. 261 (coloring
matter).

Fic. 380.-Cyanea capillata, after Vanböffen, in Nordisches Planitton.

 Cyanea citrea, Krssin

It is practically impossible to draw any fixed distinctions between the various forms of he great Cyanea of the North Atlantic. Intergrading forms are commonly met with and many of the races are separated only geographically or upon color distinctions which are neither wholly characteristic nor stable. Medusa capillata Linné, 1746, is the oldest name applied to any of these medusæ. The following-are probably all varieties of one and the same species, C. capillata:

Cyanea capill hata. Bell about 500 to $1,1,20$ mm. wide. Ocular and interocular clefts of bell-margin not sharp and narrow,
but with eventy rounded curves. Bell, palps, and tentacles redd ish or vello wishb-brown, with rose-coiored or red gonads.
 one of each group being the longest. When 20 mm . wide there are 1 , tetacaces in in ach cluster wwith 3 long ones
in the midde. When 41 mm . wide there are 35 and when 86 mm . there are 63 tentacles. This variet is not unin the midde.e. When 41 mm. Wide there ere 35 and when 86 mm. there are 6 tentacles. Th
common in the English channel, Norrth sea, and coast of Norway in summer and autumn.
Var. lamarckii. Distinguished by the decided blue color of the bell and palps, the color being lighter at the margin
than at the center of the bell. Gonads and tentacles nearly white. In other respects this form resembies C.capillata. anhöfen states that when the medus 43 m. Whe there are only 20 , and when 85 mo. Wie each group, thus being only about half as many as in the typical C. capillata of the same diameter. On the other hand the gonads in a medusa of C. lamarcck 43 mm. wide are about as long as the palps, thus being larger than in
C. capillaia. This form is found in the English channel along the coasts of France and Great Britain at Helgoland,
Var.
do
o
a
 mens over 800 mm. in diameter are rarely met with. The bell in very variable in color but is usuarlys rich brown and
yellow, with deeply colored gonads and rich rosin- yeillow muscles and tentacles. It is found off the American coast Yeilow, with deeply coloreded gonads and rich rosin-yelow muscles and tentacles. It it sound of the American coast
north of Cape Cod, where it is abundant during the summer, beconing mature and disppearing in early autumn.

Fro. 38 r.-Cyanea ferruginea, according to Eschscholtz, after Vanhböfen, in Nordisches Plankton.
 in July, but on the coast of New Jersey it is found in August.
ar. nozakii. Similar to Co fulva, but milk-white in color. Found in the Inland Sea of Japan.

wide. It forms large swarms during the winter and spring of the coast of the United States between Cape Hatteras,
Var. ferrusuginea. Of the North Pacific coasts of America and Asia. It is a variety of C.capillata and is apparendy identical With the variety C. "artica.. It becomes about 450 m. .w. wide and is iight-yllow or orange with the stomach and radial

 to be desired, for it is possible that Mer
The following is a detailed description of Cyanea "arctica" of the coast of North America Medusæ of this size are very rare, however, and the majority are not over 800 mm . wide. The
umbrella margin is divided by 8 deep, adradial clefts into 8 principal lobes, which are about twice as broad as they are long. Each of these lobes is in turn divided by a median cleft, and there are also two slight notches upon the bell-margin on either side of the median cleft; the margin, therefore, displays 32 indentations, between which there are 32 lappets. The margin of the bell is sharp-edged for the gelatinous substance, which is quite thick at the center of the disk, becomes very thin as one approaches the periphery. The 8 marginal senseorgans are found at the bottom of the median niches of the 8 principal lobes of the disk. Each sense-organ is elongate and club-shaped, and protected above by a web which stretches between the adjacent lappets; proximal half of club quite thick, with a well-developed swelling upon
its lower (subumbrella) side; this swelling is covered with wart-like elevations and provided its
with one or two papillæ. Distal to this swollen region the club extends outward as a cylindrical tube which terminates in a swollen knob-like part containing an entodermal mass of crystalline concretions, but no ocelli. Two open pits project downward from the floor of the exumbrella on either side of the base of the sensory-club. The structure of the sense-organ in Cyanea has been studied by L. Agassiz, 1862;' Eimer, 1878; and Fewkes, 1881. About 800 long tentacles arise from 8 adradial, crescentic regions on the floor of the subumbrella, about midway between the periphery and the center. The horns of these crescentic areas point outward and the tentacles are arranged in about 5 concentric rows in each crescent, the oldest and longest tentacles being on the innermost row. The tentacles are hollow and highly contractile;
when fully expanded they attain a length of about 25 times the bell-diameter; their surface when fully expanded they attain a length of about 25 times the bell-diameter; their surfaces
are thickly covered with nematocysts. Mouth 4-cornered and situated at center of subumbrella; it is provided with 4 long perradial mouth-arms, the margins of which are greatly folded, forming the curtain-like lips or oral fringes which hang downward in the water. Mouth-arms about as long as bell-diameter, and with their fringes appear as a complexly folded, contractile mass of curtain-like appendages hanging from the oral floor of the bell.

Gonads occupy 4 complexly-folded pouches which project from subumbrella floor at the 4 interradial sides of the stomach. Numerous clusters of small gastral cirri project from the bases of the gonads into the stomach-cavity; these are far more prominent in the young medusa than in the adult, for in the mature medusa they become hidden away at the bases of the pendant; pouch-like folds of the genital organs. There is a very powerful and conof the pendant, pouch-like folds of the genital organs. There is a very powerful and con-
spicuous system of circular muscles in the subumbrella; these muscles occupy a zone about onee-eighth as broad as bell-radius and which lies adjacent to and centrifugal from the gonads. This zone of muscles is composed of those in the adradii 6 trands of radiating 8 in the rhopalar radii being only half zone of circular muscles and pass outward on either side of the sense-organs.
. The central stomach is a wide, lenticular space in the center of the disk; peripherally it gives rise to 16 radiating pouches, the outer edges giving numerous branched canals which ramify through the lappets without anastomosing. The 8 pouches in the radii of the senseorgans are less than half as wide as the 8 in the radii of the tentacles. The tentacles and the stalks of the sense-organs are hollow and in direct connection with the gastrovascular space of
the medusa. There is no ring-canal. The gonads are great hollow bags forming part of the gastric system of the animal. There are deep clefts in the aboral floor of the stomach giving it a reticulate appearance (see fig. 3, plate 65).

The gelatinous substance of the bell is translucent with a slightly bluish or yellowish tinge The entoderm of the gastrovascular system is of a rich brownish-purple and the mouth-arm and oral curtains are chocolate-purple. The gonads and tentacles are either yellowish or reddish-brown, and the muscular system of the subumbrella is brown or yellow.

This species extends. from the southern coast of New England northward to the Arctic Ocean. It thrives best in the colder waters, and specimens found south of Cape Cod are usually of small size. It is worthy of notice, also, that south of Cape Cod the medusx dis ones are most abundant in August and September In Europe it is abundant off the coasts from France to Northern Russia, and is found at Spitzbergen in August.
Cyanea arctica appears to be identical with the so-called C. ferruginea of the North Pacific; and C. postelsii of the Pacific is a closely allied form.

The embryonic and larval stages have been studied by L. Agassiz, 1862; Fewkes, 1881; Hamann, I890; MacMurrich, I89r; and Ida Hyde, 1894. Agassiz gives a series of figures illustrating the general developmental stages of the planula and scyphostoma; while Hyde gives a very complete account of the histology of the early stages. The eggs are orange-colored and provided with a membrane, and are dehisced from the ovaries into the gastric cavity,
where they undergo segmentation among the folds of the mouth-arms and finally escape through the mouth of the parent medusa as free-swimming planulæ. The segmentation is total but unequal, the cells at one pole being smaller than those at the opposite pole. A blastula is formed in which there is a large central blastocoel. The gastrula results from the rapid divisions of one or two small cells at the small-cell pole, which form a layer that invaginates. Hyde finds no wandering inward of free cells, but McMurrich records this condition. The blastopore then closes over and the entoderm becomes entirely enveloped by the ectoderm. In this condition the larva becomes a pear-shaped, ciliated planula, and swims actively through the water, the posterior, narrow end being that at which the gastrula mouth had developed. formation of a shallow, crater-like, glandular invagination of the ectoderm at the broad anterior pole of the pear-shaped planila, and then the animal sinks down and attaches itsel to the bottom by this forward end. A cup-like depression of ectoderm then presses down upon the entodermal sac at the narrow posterior end and finally fuses with it, and eventually the mouth breaks through at this point.

The first pair of the radial pouches is formed from the entoderm, the second, in part a least, from the ectoderm of the crater. MacMurrich, 1891, and Hargitt, 1902, observed that planulæ in confinement encysted themselves during this stage, remaining thus for severa days until the mouth is about to break through, when the embryos emerge from the cyst this, however, only in one embryo and it is possibly an abnormal condition due to unfavorable surroundings. Simultaneous with the formation of the mouth 4 tentacles make their appear ance, and the scyphostoma finally acquires, 15 to 20 tentacles. Hargitt, 1902, finds that lateral stolons are sometimes produced by the scyphostoma, and secondary scyphostomæ bud out from these stolons. A number of ephyre result from strobilization of the scyphostoma, and this may occur in 18 to 20 days after the planula has attached itself but this period varies considerably.

The young ephyra 3.5 mm . in diameter (plate 65, fig. 4) has a simple 4 -cornered mouth at the center of the subumbrella, and 4 smooth-edged, slightly raised lips. The 8 tentacula notches in the margin are much wider and deeper than the notches of the sense-organs. Th them and they thus come to project from the subumbrella floor of the disk. 4 short, ento dermal gastric cirri (ot plate 67, figs. 2,3) are found upon the oral floor of the subumbrella near the interradial corners of the mouth and project into the stomach-cavity. The gastri system in this stage consists of a wide, lenticular, central stomach from which there extend outward it simple, radiating pouches in the radii of the tentacles and sense-organs. In
later stages the young medusa develops an increasing number of tentacles and the lips form long curtain-like folds surrounding the 4 -cornered mouth. When the young medusa is abou 7 mm . in diameter there are a number of slender papiliz upon the exumbrella and these are clustered especially at the aboral apex. In this stage the medusa rarely comes to the surface remains sedentary. The same habit is exhibited by the closely allied "Cyanea fulva" which remains sedentary. The same habit is exhibited by the closely alined Cyanea fulva which
is represented in figs. I to 7 , plate 66 , and figs. I to 3 , plate 67 ; and it is probably due to is represented in figs. I to 7 , plate 66, and figs. I to 3 , plate 67 ; and it is probably due to
some such habit that the young are rarely to be found upon the surface while the large and mature medusæ are very abundant. The scyphostoma and young medusa feed upon protozoa, starfish, and mollusk larvæ.
Macallum, ry03, studied the composition of the body-juices of Cyanea arctica and found them to be as follows:

	Na .	Ca.	к.	Mg.
Content of sea-water......................	$\begin{aligned} & \text { roo } \\ & \text { roo } \end{aligned}$	$\begin{aligned} & 3.84 \\ & 3.86 \end{aligned}$	3.66 7.67	$\begin{gathered} \text { r.99 } \\ 1.29 \end{gathered}$

The SO_{3} is less in Cyanea than in sea-water by about 32 to 36 per cent and the medusa contains more iron and less iodine than does sea-water

M'Kendrick, 1881, studied the chemical composition of the coloring matter of Cyanea and found that the blue pigment of Cyanea and Aurellia is in the form of granules surrounde by clear protoplasm. This pigment is soluble in acids, but is precipitated in neutral or aci solutions. Hence when the medusa becomes acid through decomposition after death the pig ment dissolves out into the water, but during life it remains stable. This pigment matter of Cyanea shows two absorption bands in the spectrum, one in the red and one in the orange, very much as in Stentor caruleus.

Holt, Igo2, finds that-in the North Sea this medusa is accompanied by young whiting.

Cyanea fulva, Agassiz, L., 1862, Cont. Nat. Hist. U. S., vol. 4, pp. x9, 162.-Agassiz, A., 1865, North Amer. Acal., P. 46.
This southern variety is distinguished from the northern C. arctica by the light yellow or yellow-brown color of the entoderm of its gastrovascular system, which is never rich brown as in the northern C. arctica. It is als much smaller, being rarely over 200 mm . in diameter. The lappet notches are more uniform than in C. arctica and the tentacles are much less numerin C. arctica. This variety appears in great numbers early in May so complexly folded as of New England, and the medusæ arrive at maturity about the middle of June, after which they suddenly disappear. We have, however, met with swarms of them about 20 miles off Barnegat Bay, New Jersey, early in August. This variety has not been taken north of Cape Cod. The development is similar to that of the closely allied C. arctica.

We may regard this as a local race of C. arctica, which ranges from Cape Cod, Massachusetts, southward to the Carolinas; where it is replaced by a still more southerly variety, C. arctica var. versicolor.

Cyanea capillata var. versicolor L. Agassiz.
Plate 65 , figs. I and 2.
Cyanea versicolor, Agassiz, L., 1862 , Cont. Nat. Hist. U. S., vol. 4, Pp. rr9, 162 .-Agassiz, A., 8865 , North Amer. Acal., P. 46
This form bears the same relation to Cyanea arctica var. fulva as fulva does to the northern C. arctica. It is smaller than fulva, but is distinguished especially by its pink coloration Cape Hatteras, North Carolina, and Cape Canaveral, Florida. They are practically confine to pure open water and do not frequent the harbors. The mature medusæ bear many ball-
like clusters of developing planulx gathered into the peripheral canals of the gastric space. The gelatinous substance of the disk is translucent milky-blue in color, while the gastro vascular space, gonads, radial and circular muscles of the subumbrella and the entodermal cores of the tentackes are purplish-pink. The outer parts of the veil-like folds of the palps ar sense-organs are reddish-brown. The planulæ are yellow, but the ephyra is pink.

The curtain-like oral fringes are relatively smaller than in Cyanea arctica. However, the chief distinction of C. versicolor is its peculiar pink coloration. Even in the young ephyra only 2.5 mm . in diameter, the stomach-cavity displays a deep purplish-pink, very different from the pale yellow-colored ephyra of the southern C. fulva.

Mature medusæ of C. versicolor occur in the winter months along our southern coast.
Among thousands observed by the author during the winter of rgo4-05 not more than a dozen lacked the pink coloration and these resembled the variety C. capillata var. fulva. They were, however, swimming among swarms of the typical pink versicolor medusx. The variety

Cyanea capillata var. nozakii Kishinouye.
In Japanese, 3 pp., I plate.
Kishinouye's paper upon this medusa is in Japanese, but with a German abstract, and accompanied by two clear figures of the animal. The bell is flat and shield-shaped, 5 times as wide as high, 160 to 260 mm . wide. The bell-radius is 3 times as wide as the radius of the
central stomach 16 rounded ephyra lappets, twice as wide as long. The ocular stomachcentral stomach. 16 rounded ephyra lappets, twice as wide as long. The ocular stomach-
pouches are nearly rectangular. The tentacular stomach-pouches are twice as wide at their pouches are nearly rectangular. The tentacular stomach-pouches are twice as wide at their bases, and at the zone of the sense-organs 2.5
milk-white. Found in the Inland Sea of Japan

This medusa is distinguished from Cyanea capillata var. fulva only by its color.

Cyanea annaskala von Lendenfeld

 medusa in the Desmonema stage).
Cyanca mullerianthe $=C$. annnaskala, von

Abstract

N Lend

\qquad

Umbrella flat, shield-shaped, 70 to 200 mm . wide and about 12 to 25 mm . thick, with a few protruding nettling-warts at the middle of the exumbrella; elsewhere smooth. 8 margina sense-organs which lack ocelli, and with 32 marginal lappets divided into 8 main flaps of 4 lappets each. These lappets are evenly rounded and not wider at the end than at their bases; the 16 ocular lappets are about half as wide, as also are the 16 velar lappets adjacent to them There are $8 U$-shaped clusters of long tentacles arising from the floor of the subumbrella, with the concavity of each U directed outward. These tentacles are very numerous and are 300 mm . long. The 4 complexly folded curtain-like lips are about as long as the bell-radius. The 4 protrusive gonads are large and complexly folded. The 8 ocular, radial pouches of The 4 protrusive gonads are large and complexly forded. The 8 ocular, radial pouches of break up into blindly-ending, branched, non-anastomosing vessels in the lappets. There is no ring-canal. The gelatinous substance of the disk and the tentacles are colorless. The entoderm of the gastral cavity is brown. Curtain-like lips intensely purple. Genital organs of the male are rose-colored; those of the female are orange-yellow. The medusa is distinguished from the Cyaneas of the northern hemisphere mainly by its brilliant coloration. "It appears to be more closely related to C. versicolor than to any other form, and it is interesting

This species is abundant along the temperate coasts of Australia and is found in Port Philip, Victoria, in large numbers from January to March. It is described in great detail by von Lendenfeld, who inds that the embryos remain attached to the mouth-arms until they water and produce a long stalk with a chitinous perisarc and 8 arms (tentacles?). According to von Lendenfeld the ephyra develops into an adult medusa by a complicated metamorphosis. The lappets of the umbrella are said to be produced by fission, but this statement probably applies only to the ocular lappets, not to the 8 primary ephyra lobes.

In the variety purpura from Melbourne Harbor, Australia, the mouth-curtains are rich purple throughout, and in the variety marginata from Sydney their free-margins are purple, but elsewhere they are colorless.

Fic. 383 .-Drymonena " "victoria," after Haeckel, in Deep-sea Meduse of the Challenger Expedition.
Cyanea mullerianthe Haacke, from St. Vincent Gulf, South Australia, is a delicately pink-colored variety of this medusa, and Desmonema rosea Agassiz and Mayer is the same medusa when young and in the stage wherein the tentacles of each cluster arise in a single row.

Desmonema annasethe Haeckel, r880, may be a young contracted specimen of this medusa. The 16 so-called feathered, radiating ribs of the exumbrella present the appearance of being due to unnatural contraction. The tentacles arise in 8 U -shaped groups with 13 to 17 tentacles in each crescent. This form is described by Haeckel from a preserved specimen found off the west coast of South Africa. Color (?)
describes parasitic actinian larvæ found upon the mouth-curtains of the Cyanea of Port Phillip, Victoria.

Genus DRYMONEMA Haeckel, 1880.

 P. $633 ;$ n88, Report on
Anceiger, Jahrg. 6 , $p .220$.

The type species is Drymonema dalmatina Haeckel, 1880, of the Mediterranean. The same species was renamed D. "victoria" by Haeckel in 188r. D. gorgo is a closely related form from the coast of Brazil.

generic characters.

Cyaneidæ with 8 marginal sense-organs. The tentacles are not grouped in separated clusters, but arise diftusely in a wide annulus from the subumbrella. The central stomach gives rise to 16 radial pouches (8 ocular and 8 interocular) which branch dichotomously, but do not anastomose. No ring-canal. Marginal lappets numerous. Development unknown.

Fis. 384.-Drymonema "victoria," after Haeckel, in Deep-sea Medusx of the Challenger Expedition.
This genus is distinguished from Cyanea and Desmonema by the fact that its tentacles arise not in 8 separate clusters, but from a wide annular zone in the subumbrella. Moreover, the 16 dichotomously branched radial-canals, numerous velar lappets, and the radial furrows of the exumbrella are all distinctive of Drymonema

Drymonema dalmatina Haeckel.

Prmanem 180

Haeckel, i880, had four small specimens of this medusa from the Dalmatian coast, Mediterranean. They ranged from 120 to 160 mm . in width and had only 64 radial furrows
upon the exumbrella and 9 double lappets per octant, 144 in all. In Antipa's specimens from the Gulf of Smyrna, Mediterranean, the radial furrows had increased to be 144 and thus corresponded in number with the lappets. Haeckel's specimens had only 80 terminal gastric canals, while Antipa's specimens had I44.
The following is a description of An

The following is a description of Antipa's specimens, these being the more mature: Bell flatly rounded, shield-shaped, 500 to $1,000 \mathrm{~mm}$. wide, I44 radial furrows on the 4 exumbrella, and between them 144 marginal lappets. 8 marginal sense-organs in deep niches 4 perradial, veil-like oral palps, each ending in 2 points, and thus the palps have 8 adradial
points. These palps are more than 1.5 times as long as the disk-radius and their outer edal points. These palps are more than I .5 times as long as the disk-radius and their outer edges
are complexly folded. The numerous tentacles arise from the middle zone of the subumbrella are complexxy folded. The numerous tentacles arise from the middle zone of the subumbrella, There are 4 interradial protruding horseshoe-shaped gonads. Mouth-opening wide. Wall of mouth-tube thickened at 8 subradial places. The I6 stomach-pouches terminate in 144 dichotomous ramuli (I28 tentacular and 16 ocular). Color reddish-white (pink ?). Gulf of Smyrna, coast of Asia Minor, Mediterranean; Trieste, Adriatic Sea, Graeffe; Straits of Gibralter (?) Haeckel.

Drymonema gorgo F. Mïller

Drynhonema gorgo, MüLxer, F., 888 , Zool. Anzeiger, Jahrg. 6, P. 220.
The disk is 20 to 500 (usually 300) mm. wide. "Mouth-arms" or palps longer than diameter 8 ocular stomach-pouches fork once, thus giving 16 marginal diverticula as in D. dalmatina.
The 8 velar stomach-pouches branch dichotomously 4 times, as in the mature D. dalmatina, but the fifth, sixth, eleventh, and twelfth branches in D. gorgo branch dichotomously a fifth time, and thus each of the 8 ocular stomach-pouches gives rise to 20 terminal branches in the lappets. There are thus $8 \times 20+16=176$ dichotomous terminal gastrovascular canals in D. gorgo and only $8 \times 16+16=144$ in D. dalmatina.

Found at St. Catharina Island, coast of Brazil. Rare
This may prove to be a variety of D. dalmatina.
Genus (?) PATERA Lesson, i843; DONACOSTOMA L. Agassiz, 1862.
 (?) Donacosiocma, Aggasiziz, L., I862, Cont. Nat. Hist. U. S., vol. 4, pp. Ir8, I63.

The type species of this problematic genus is Patera cerebriformis, first described as Dianca cerebriformis by Lesson, 1829, Voyage de la Coquille, Zooph., p. 124, planche io. Lamarck, I816 (Hist. Anim sans Vert tome 2, p.
generic characters.

Cyaneidr which are said to have 16 rhopalia. 16 clusters of tentacles arise from the 8 rhopalia, but $\mathbf{~} 6$ rows in position with the sense-organs. Agassiz's Donacostoma has only 8 rhopalia, but 16 rows of tentacles.

Patera cerebriformis is said to come from near the Cape Verde Islands, tropical Atlantic; and another species Donacostoma woodii L. Agassiz, 1862 (Cont. Nat. Hist. U. S., vol. 4, pp.
II 8 , I63), is from the China Sea, and is said to have 8 "eyes," but with I6 branches of 118, I63), is from the China Sea, and is said to have 8 "eyes," but with 16 branches of
tentacles like Patera, arranged in a single row in each lobe. Neither is well enough known tentacles like Patera, arranged in a single row in each lobe. Neither is well enough known
to be worthy of description here, and indeed it is possible that both belong to the genus Dryto be worthy of description here, a

Family ULMARID E Haeckel, r880, sens. ampl

> FAMILY CHARACTERS.

Semæostomeæ with simple or branched radial-canals and a ring-canal. With hollow tentacles. 4 interradial gonads. 4 mouth-arms with folded, curtain-like margins.

The medusæ of this family are closely related to the Cyaneidx, butt differ in that their radial-canals are placed in intercommunication by means of a marginal circular canal; moreover, th radial-canals anastomose in some of the genera, and this is never the case in the Cyaneidx.

The genera of the Ulmaridx are as follows:

1. Subramict Cmbrosing.

The tentacles arise singly from the margin in the clefts between the lappets. 4 eraginated, sac-like gonads without subgenital

 stomach. The I6 rhopalar canals
network of anastomosing vessels.
2. Subfamily Sthanontine.

Tentacles arise from floor of subumbrella. Evaginated, sac-like gonads without subgenital pits. 8 to $\mathbf{~} 6$ marginal sense-

Sthenconala, brancheodize, Adradial canals some simple and some branched.
Phacellophora, BRandr, 1835: 16 marginal sense-organs alternating with 16 clusters of tentacles. Radial-canals in the
 stomach-margin.
3. Subramily Aurxiniw.
The tentacles and lappets arise from the sides of the disk above the margin. Invaginated gonads with external subgenital pits. 8 marsinal sense-organs. 4 simple or bifircated mouth-arms. Numerous tentacles and lappets.
Aurellia, PERRON AND Lxserve, soog. 4 simple non-ibiurcated mouth-arms. Some or all of the radial-canals give rise to
Aurellia, PẾroN Anp Lrsurur, 809 .
anatomosing branches.
Aurosa, HAEcKxL, 8880 . Similar to $A u r$

Subfamily UMBR OSIN x.

The tentacles arise singly from the bell-margin in clefts between lappets. 4 protrusive, bag-like gonads without subgenital pits. 4 unbranched mouth-arms.

(?) Genus FLORESCA Haeckel, I880, sens. ampl.

Floscula + Floresca; Haxckxr, 1880, Syst. der Medusen, p. 537, 538, 643.

generic characters

Haeckel's genera Floscula and Floresca may possibly be the young stages of some medusx of the Ulmaridx. In these forms we find that the central stomach gives rise to simple radialcanals which connect with one another by means of a marginal ring-canal. The tentacles arise from the clefts between the lappets, not from the floor of the subumbrella. Wee must between the lappets and later the margin grows outward, leaving them to project from the subumbrella. Indeed all tentacles in Scyphomedusæ are structures of the subumbrella.

Floscula has 8 tentacles and I6 marginal lappets; Floresca has 24 tentacles and 32 marginal lappets. Indeed Floresca presents every appearance of being immature and only
an advanced stage of "Floscula," both being one and the same species. Both come from the tropical Indian and Pacific Oceans.
A brief description of these medusæ may be of service should they prove to be mature
orms. Haeckel is the only naturalist who has seen them. forms. Haeckel is the only naturalist who has seen them.

"Floresca parthenia" Haeckel.

Bell rounded, 50 mm . wide, 30 high, with a 16 -rayed pigmented star-like marking in the perradii, interradii, and adradii of the exumbrella. 8 rhopalia, $(8 \times 4) 32$ tongue-shaped
lappets. $24(8 \times 3)$ hollow tentacles 2 to 3 times as long as the bell-diameter. Throat-tub I. 5 times as long as the bell-radius and as the 4 complexly folded, leaf-shaped lips. The a marginal ring-canal. 4 interradial crescentic gonads with their convexities outward. These project from the floor of the subumbrella. There are no subgenital pits. The gonad are lined on their inner, concave sides by a row of gastric cirri. Color (?) Found at New Caledonia, New Guinea, and the Cocos Islands in the tropical Pacific and Indian Oceans. Another specimen called "Floscula pandora" by Haeckel, 1880 (p. 643), is from the tropical Pacific. The bell is 30 mm . wide, without a star-like marking upon the exumbrella, and with a short throat-tube hardly one-fourth as long as the long, narrow mouth-arms. Tentacles as long as the bell-radius. Lappets oval, sharp pointed, I .5 times as long as broad.

These medusx appear to be immature, although Haeckel states that the gonads contained ripe eggs, but he studied only preserved specimens and cut no sections.

Fro. $385 .-$ "Floscula promethea."

Fic. 386.""Floresca parthenia."

After Hacckel, in Das Syst. der Medusen.
Genus DISCOMEDUSA Claus, 1877.
Discomedusa, Claus, 1877 , Denkschrift, Wien. Acad., Bd. 38 , p. 42 .
Ulmaris + Umbrosa, HARckEL, 8880 , Syst. der Medusen, P. 545.

The type species is Discomedusa lobata Claus, 1877, of the Mediterranean. This may prove to be an arrested variety of Haeckel's Undosa undulata of the west coast of tropical Africa. In Undosa, however, there are 40 tentacles and 48 lappets, whereas in Discomedus there are 24 tentacles and 32 lappets.

generic characters.

Ulmaridx with $24(3 \times 8)$ tentacles, $32(4 \times 8)$ lappets, and 8 sense-organs. The ten-
tacles arise from the clefts between the marginal lappets. There are 8 simple, unbranched adradial canals, 8 branched, perradial and interradial canals, and a marginal ring-canal.

Haeckel's genus Ulmaris is apparently only the young of Discomedusa in a stage wherein there are only 8 tentacles and 16 lappets. His genus Undosa bears the same relation to Discomedusa that Dactylometra does to Chrysaora, the tentacles and lappets having increased from

4 and 32 to 40 and 48 , respectively. Thus Discomedusa is a growth-stage in the developmen of Undosa: The medusa of Trieste, Adriatic, appears to become mature, however, with 24 tentacles, and it is interesting to observe that under unfavorable conditions in brackish water Dactylometra also becomes mature with 24 instead of 40 tentacles.

Discomedusa lobata Claus

 Bd. 5 p .343
sabata, HA

Bell shield-shaped, flatter than a hemisphere, 150 mm . wide, 40 mm . high. The 16 ocular lappets are as wide as, but somewhat longer than, the 16 tentacular lappets. There are 24 tentacles, and 8 adradial ones are about as long as bell-diameter and twice as long and thick as the 16 secondary tentacles. The 4 mouth-arms are wide, tapering, somewhat longer than bell-radius and with curtain-like, folded margins provided with numerous tentaculæ. Mouth cruciform. Genital radius somewhat wider than half the bell-radius. The 4

Fro. 387 -"Ulmarts prototypus,", after Haeckel, in
crescentic gonads are convex outwardly and their ends nearly touch in the 4 perlines of long, numerous, gastric cirri, one row for each gonad.

The central stomach gives rise to 8 unbranched, adradial canals and to 8 perradial and interradial vessels, each of which gives rise to a pair of branched and anastomosing side-branches, the terminal ramifications of which fuse with the ring-canal. ing-canal.
This medusa is found at Trieste, Adriatic Sea, from December to March, the young being common in January and the adult in February and March. Claus gives the best description of it. It may be identical with the imperfectly described Medusa stelligera Ehrenberg, from the harbor of Alexandria, Egypt, in October. Ehrenberg's medusa, however, appears to have
ength, and may therefore belong to Haeckel's genus Undosa
The young medusa of Discomedusa lobata passes through a stage wherein there are only and interradial ones branched.

Discomedusa philippina, sp. nov,

This form is allied to D. lobata of the Mediterranean, but it appears to be smaller and to differ in the bluntness of its lappets, in having no fusions between the adradial and perradial and interradial canals, and above all by the blind branches on the outer side of the ringcanal.

Bell 29 mm . wide, flatter than a hemisphere, evenly rounded, exumbrella thickly besprinkled with prominent wart-like projections. Gelatinous substance fairly thick at center, D. lobata-margin. 8 rhopalia. 32 oval lappets all similar each to each, thus differing from tacles. The tentacles we 8 adradial being longer and stouter than the 16 intermediate tentheir lengths could not be determined. 4 simple, crenulated lips at the end of a 4 -cornered
manubrium about as long as the bell-radius. 4 interradial, crescentic gonads with their convexities outward and with a single row of simple unbranched gastric cirri along their inner sides. These gonads are about 5 times as wide as the perradial interspaces between them.
Central stomach 15 mm . wide. 8 simple, unbranched Central stomach 15 mm . wide. 8 simple, unbranched, adradial canals arise from central stomach and proceed straight outward to ring-canal. Trident-like, pitch-fork-shaped, anastomosing canals arise from the 8 (perradial and interradial) sides of the stomach and break up into a network of vessels which fuse with the ring-canal. These networks, however, do not fuse with the 8 adradial canals, in this differing from D. lobata. On its outer side the ring-canal gives rise to 64 simple, unbranched, blindly-ending diverticula; a pair in each dull milky. The gonads appear to be mature, but the preservation is such that I canal-system

Fic. ${ }^{388 .-D i s c o m e d u s a}$ philippina, sp. nov. Drawn by the author, from speci-
mens obtained by the U . s . Fisheries Bureau steamer Albatross in Catingan Bay, Philippine Islands, Aprii 20, 19o8.
certain that this is the case. Six specimens were found by the U. S. Fisheries Bureau steamer Albatross, in Catingan Bay, Philippine Islands, on April 20, 1908. This medusa may possibl be the young of Parumbrosa polylobata (see Appendix) but the large size of its gonads and complexly branched canals renders this improbable

Genus UNDOSA Haeckel, I880.

Undosa, Hatcrixi, r880, Syst. der Medusen, P. 546.-MAAs, rgo8, Expedition Antarctique Fransaise, Meduses, p. 9.
Toung medasa), lo. cin, p. 545^{-}.
The type species is Undosa undulata Haeckel, of the tropical Atlantic coast of Africa It is possible that Ehrenberg's Medusa stelligera of the Mediterranean may be identical with this species, but it is so imperfectly described that it is unrecognizable.
generic characters.
Ulmaridæ with 8 sense-organs, $48(8 \times 6)$ marginal lappets, and $40(5 \times 8)$ tentacles which arise from the clefts between the lappets. 4 interradial protrusive gonads without subgenita arise from the cefts between the lappets. 4 interradial protrusive gonads without subgenital
ostia. 8 simple adradial canals, 8 branched perradial and interradial canals, and a ring-canal.

The genus is derived from Discomedusa through the multiplication of lappets and tentacles. During the growth of the medusæ they pass through a "Discomedusa" stage.

Undosa undulata Haeckel.

Sese undulatat, Habcrirt, 8880 , Syst. der Medusen, p. 546 , taf. 33 , fign. 5,6 .
Bell 120 mm . wide, 40 mm . high, flatly rounded. A brown, 16 -rayed, star-like figure on exumbrella composed of pigmented nettling ridges. 48 (6×8)-sharp-pointed, oval lappets, somewhat longer than wide and projecting prominently; the i6 ocular lappets are somewhat onger that the as long as the 16 secondary, and 3 times as long as the 16 tertiary tentacles. All tentacles are hollow. The 4 mouth-arms resemble those of Aurellia aurita, but their margins are more curtain-like and more folded and provided with numerous tentacular filaments. The 4 gutters of the mouth-arms are very deep. The 4 folded, interradial, baglike gonads project from the floor of the subumbrella. There are no subgenital ostia. The genital radius is about half that of the bell itself. Margin of central stomach circular. 8 simple, unbranched, adradial canals and 8 (perradial and interradial) canals, which give ise to numerous side branches which in turn anastomose, forming a netwo necting all 16 canals one with another and with the marg ring-canal

color is bluish, and bella dark-brown. Found at Fernando Po, coast of Guinea, Africa. Haeckel's "Ulmaris prototypus" from St. Helena is probably the young of this species (loc. cit., r880, p. 545 , taf. 33 , fign. $\mathrm{I}-4$)

Genus DIPLULMARTS MAAS, 1908. Diphlulmaris, MaAs, Ioos, Expedition Antarctique
 Zool. 2, p. 45 .
The type species is Diplulmaris antarctica, Maas, I908, from the Antarctic Ocean
generic characters.
Ulmaridx with 16 tentacles, 64 marginal lappets, and 16 marginal sense-organs. 10 branched radial and 16 simple straight radial-canal by an anastomosing network of vessels
so Ondan a a in the tentacular radi.

This medusa bears the same relation to Undosa that Sanderia does to Dactylometra. This med there a remarkable case of parallelism of mutation in the Pelagidx and Ulmaridx Indeed, there is a accompanying table.

	Family Pelagidx.	Family Ulmaridx.
thopalia, 8 tentades, 16 lappets.	Pelagi	Ulmaris (immature ?)
8 riopalia, (8×3) tentacles, 32 lapp	Curysaora....	
8 \% rhopalia, 8×5) tertacles, 48 lap	Sanderia.	Diplumaris

Diplulmaris is a connecting link between the subfamilies Umbrosidut, in which the ten tacles arise from clefts between the lappets, and Sthenonidii, in which they arise from the subumbrella floor; for in the young Diplulmaris the tentacles arise from the subumbrella,
but later the bell-margin becomes cleft so that the tentacles project from the clefts. Diplulmaris resembles the genus Phacellophora in having 16 rhopalia.
his specimens were more advanced than under the name Ulmaropsis drygalskii. Some of his specimens were more advanced than those seen by Maas, and they had 64 marginal

Diplulmaris antarctica Maas.

Fr6. 390.-Ditlplumaris artarctica, young medusa, after Maas in Meduses Expedition Antarctique Francaise.
The largest specimen is described by Vanhöffen, whose publication appeared only a few eeks after that of Maas, and is as follows
Bell 42 mm . wide, 16 marginal sense-organs alternating with 16 simple, hollow tentacles The sense-organs and tentacles are flanked by 64 slender, pointed lappets, the 32 lappets anking the seorgans being wider and longer than those flanking the tentacles. 32 radial tentacular canals are simple stomach these being in the tentacular and ocular radii. The
of side branches and thus 96 canals radiate outward toward the margin, before reachin which they are all connected by a network of anastomosing vessels. There are 4 lips and ronads. 9 ephyræ and young medusæ of this species were found by the German Antarctic Expedition between January and March. They ranged from 4 to 22 mm . in diameter. The species appears to be quite variable, for only 6 of them were 16 -rayed, while the 3 others wer 12, 15 , and 17 rayed respectively.

Two immature specimens were studied by Maas. The bell of larger was 35 to 40 mm . wide. I6 marginal sense-organs flanked by only 32 bluntly-pointed lappets. I6 hollow, tapering tentacles, somewhat shorer than the bell-radus. These tents are only half as deep as the inter-rhopalar. Ventral stomach circular, nearly as wide as bell-radius. I6 trident-shaped radial-canals arise from the stomach-margin in the rhopalar radii and alternate with 16 straight, narrower, unforked canals in the tentacular radii. All the radial-canals give off anastomosing side branches in the outer parts of their lengths near the ring-canal. The ring canal is at the zone of the origins of the tentacles, and 16 slightly branched radiating diverticula extend outward from it to the sense-organs. The 4 lips are bordered by curtain-like fringes. 4 interradial gonads with clusters of gastric cirri. Canal system yellowish-brown the tentacles dull purple. The specimen was immature.

Mas also describes a smaller specimen only 15 mm . in diameter (fig. 390). This had 8 long tentacles alternating with 8 short. The short tentacles project from the floor of the subumbrella at some distance inward from the clefts between the lappets, and it appears that during growth the clefts extend inward until they meet the tentacles at the zone of the ring-
canal. There are i6 simple, unbranched radial-canals in the radii of the tentacles and 16 trident-like canals in the rhopalar radii. None of these canals gives off side-branches close to the ring-canal, as in later life. 4 interradial oval gonads are now visible, and the shor throat-tube expands into 4 pointed lips with folded margins. Central stomach circular about as wide as bell-radius.

This medusa is found in the Antarctic Ocean from January to March where it lives along the edge of the Antarctic continent having been taken at Cape Adare, off Kaiser Wilhelm along the edge of the Antarctic

Subfamily STHENONiNe

subfamily characters.
The tentacles arise in linear clusters from the floor of the subumbrella. 8 to 16 marginal sense-organs. 4 protrusive, bag-like gonads without subgenital pits. 4 unbranched mouth-sense-organs. 4 protrusive, bag-like gonads without
arms. Some single and some branched radial-canals.

Genus STHENONIA Eschscholtz, 1829 .

Sthenonia, Eschschoitz, 1829, Syst. der Acalephen, P. 59.-Hafcker, 1880, Syst. der Medusen, P. 548.-Vanhörfen, ryob,
es Plankton, Nr. II, P. 56 .
The type species and only known form is Sthenonia albida of Awatscha Bay, coast of Kamtschatka.

generic characters.

Ulmaridx with 8 rhopalia, 16 ocular lappets, 8 bifurcated velar lappets, and 8 adradial clusters of tentacles which arise from the subumbrella. 8 branched radial-canals in the rho palar radii. Numerous simple or branched radial-canals in the radii of the velar lappets and ring-canal. No subgenital pits.

Sthenonia aibida Eschschoitz.

This form has not been seen since Eschscholtz described it.
Bell about 300 mm . wide, flat, and shield-shaped. 8 marginal sense-organs. i6 ocular and 8 velar lappets with evenly rounded, reentrant markings. Each ocular lappet has a small pointed projection into which the gastrovascular system extends, and each velar lappet has
a pair of these projections. 8 adradial rows of tentacles arise from the subumbrella in the intervals between the sense-organs; these rows being somewhat subumbrella in the between them. The 4 mouth-arms are only one-third as long as bell-radius. The central stomach is less than one-fifth as wide as the bell, and there are 4 interradial clusters of gastric cirri. 8 radial-canals, each of which gives rise to several side branches, arise from the central stomach in the radii of the sense-organs. A simple and a forked canal arise in each of the 8 radii of the velar lappets. These radial-canals anastomose to some extent and

Ftc. 39r.-Sthenonia albida, according to Eschscholtz, after Vanhöffen
gives off a trident-shaped vessel in each rhopalar-radius and a pair of vessels in each velar lappet-radius. Bell whitish, gonads and canals milk-white.
Found by Eschscholtz in Awatscha Bay, coast of Kamtschatka, Siberia

Genus PHaCELLOPHORA Brandt, 1835 .

The type species is P. camtschatica, described by Brandt, 1838 , from the North Pacific.

generic characters.

Ulmaridx with 16 marginal sense-organs and numerous marginal lappets. The tentacles arise in 16 simple, linear clusters from the floor of the subumbrella, centripetal to the margin. Central mouth surrounded by 4 mouth-arms bearing curtain-like lips.. Gonads are 4 complexly folded sacs which project outward in the 4 interradii from the floor of the subumbrella. No subgenital pits. The central stomach gives rise to numerous radiating canals, some of which anastomose. There is a rino-canal at the bases of the marginal lappets. Tentacles hollow.

Name.	camtschatica.	P. sicula.*	P. ambigua. \dagger	P. ornata. \dagger
Diameter of disk in mm .	500 to 600	155	${ }_{150}$ to 200	350
Shape and number of marginal lappets.	r6 trident-shaped lap${ }_{7}$ small lappets in each of 16 semicircular, velar lobes.	32 narrow, rounded rhopalar lappets. 2 simple velar lobes.	(4×16) 64 lappets, all similar each to each, and evenly rounded.	(4×16) to (6×16) lappets all similar each to each and evenly rounded.
Shape of mouth-arms.	Long, narrow, resembling those of Aurelia.	As in P. ambigua.	Wide, curtain-like, and resembling those of Cyanea.	As in P. ambigua.
Number of radial-canals.	I6 branched rhopalar canals, and 5×16 sim. ple unbranched radial canals.	As in P . ambigua.	$\begin{aligned} & 16 \text { branched, rhopalar } \\ & \text { and } 3 \text { to } 5 \times 16 \text { simple, } \\ & \text { unbranched canals. } \end{aligned}$	$\begin{aligned} & \text { I6 branched rhopalar } \\ & \text { and (2xit) to (t) }(5 \times 16) \\ & \text { simple canals. } \end{aligned}$
Number of tentacles in each cluster.	1024	9 to 15	9	5 to. 9
Where found.	North Pacific, Siberia to California.	$\begin{aligned} & \text { Mediterranean, Naples, } \\ & \text { Messina, and off the } \\ & \text { coast of Japan. } \end{aligned}$	Pacific coast of North America, Washington.	North Atlantic, northern coast of Maine. Montevideo, South America.

*IItermediate in character between
\dagger Closely allied, probabbly identical.
Phacellophora camtschatica Brandt.

Bell flat, 500 to 600 mm . wide. I 6 marginal sense-organs each beneath a large, projecting, covering scale, which is flanked by 2 narrow, rhopalar lappets, each about half as wide as the covering-scale itself. I6 wide, nearly semicircular, velar lappets, each cleft into 7 marginal lappets. 16 crescent-shaped linear clusters of tentacles arise from subumbrella floor of velar
lappets; the convexities of these crescents are inward and their horns outward, and each consists of 20 to 24 tentacles. Tentacles about as long as bell-radius. The 4 mouth-arms are wide, tapering, and thick, and about I. 5 times as long as bell-radius; their lips are folded in a curtain-like manner. There are 4 interradial, sac-like gonads with narrow, perradial interspaces between them. The central stomach gives rise to 16 rhopalar canals which send out lateral branches, and also to 80 (5×16) simple unbranched velar canals. There is a ring-canal at the zone of the tentacles, on the outer margin of which there arise 7 blindy ending, simple diverticula in each velar lappet and a trident-shaped branch in the radius of each sense-or
Bell colorless to bluish, gonads reddish-brown, canals yellow, tentacles light-violet.

This medusa ranges along the shores of the North Pacific from Kamtschatka to San Francisco, California. It has not been figured since Mertens studied it.

Phacellophora sicula Haeckel.

 Phacellophora ambig igua, Kiscrint rour, rgro, journal College of Sci. Tokyo, vol. 27, art. 9, P. 21, x fig.

The brothers Hertwig describe the marginal sense-organs of this exceedingly rare medusa and give a very diagrammatic figure of a part of the bell-margin. They were appar-
ently under the impression that it was identical with P. ornata Brandt, from the Pacific, but aeckel rightly distinguished it as a distinct species.
The following description is based upon my study of a single good specimen of this medusa formalin at the Naples Zoological Station. Disk 155 mm . in diameter, flatter tha
brella surface finely granular, being covered with phere, being only 55 mm . kigh. Exum16 marginal sense-organs, 4 perradial, 4 interradial, and 8 adradial. Sense-organs set at bottom of deep, narrow clefts in bell-margin. The sense-club has no ocellus, merely a terminal mass of entodermal concretions. No sensory pit in exumbrella above the sense-club. 32 narrow, rhopalar lappets are separated by shallow clefts from the 16 wide, velar, simple lappets.

Fis. $392 .-$ Phacellophora sicula, drawn by the author, from a specimen found at Naples by
Dr. S. Lobianco, January 11 , 190r. B, enlarged view of part of one of the tentacles.
The tentacles are arranged in 16 clusters and arise in a single row from the inwardlyarched outer margin of the ring-canal, on the subumbrella side of the 16 velar lappets. Each cluster consists of about 9 to 15 tentacles. In the Naples specimen these tentacles are about half (75 mm .) as long as diameter of disk and are set inward at a maximum distance of 17.5 mm . from the bell-margin. A narrow canal extends throughout the length of each tentacle on the inner (centripetal) side to its tip. A double row of mammiform, nematocyst-bearing papillx extends along the inner side of each tentacle close to the tentacular canal, which sends vided with circular muscle-fibers, which The outer (centrifugal) side of each tentacle is pro vided with circular muscle-fibers, which are interrupted along the line of the papilla.

The genital cross is about one-third (55 mm .) as wide as the bell itself. The 4 extruded, pouch-like gonads with their swollen, folded, wart-like genital-sacs resemble those of Cyanea: The 4 gonads are separated by very narrow intervals in the 4 perradin. The 4 wide, curtall. The central stomach gives rise to 16 rhopalar radial vessels which fork outwardly; and also to $48(3 \times 16)$ inter-rhopalar radial-canals which are simple and do not fork. Lateral anastomoses between these radial-canals are very rare. Ring-canal very well developed, about mm . wide, while the radial-canals are each about 2.5 mm . wide, being about as wide as the spaces between them. The ring-canal gives rise to from 5 to 8 straight, simple, blindly-ending centrifugal vessels in each velar lappet.

Fic. 393 --Phacellophora ambigua, according to Brandt, after Vanhöfen, in Nordisches Plankton.
In formalin the exumbrella is yellowish-milky in color, the canal-system milky and translucent, the gonads dull orange to ocher, and the lips of a lighter hue of the same color.

Found at Naples and Messina, Mediterranean, and off the coast of Japan (Kishinouye). This species is closely related to P. ambigua, but is distinguished by having only 16 wide,
simple, velar lappets instead of 32 narrow ones, as in P ambigua. P. sicula is probably only an arrested variety of P. ambigua in which the velar lobes remain entire and uncleft.

Phacellophora ambigua Haeckel.

Haccadecomma ambigumum, Brandr, 1898, Mem. Acad. Sci. St. Petersbburg, Sci. Nat., sefr. 6; tome 4, P. 380, taf. 27, 28.-Acasssiz, Phacellophorata ambigua, HArckri, I88o, Syst. der Medusen, P. 550.-VANBB̈FFEN, 1906, Nordisches Plankton, Nr. II, P. 58 , fig. 24 .

Bell flatter than a hemisphere, 150 to 200 mm . wide. There are $64(4 \times 16)$ evenly rounded, marginal lappets all similar each to each. The sense-organs are sunken within deep, narrow clefts. Mouth-arms broad, curtain-like, similiar to those of Cyanea instead of being Aurellia-ilike, as in P. camtschatica. About 9 tentacles in each of the i6 linear clusters. The
vessels. The ring-canal gives rise centripetally to a short diverticulum in the radius of each sense-organ and to 8×16 inter-rhopalar diverticula. The gonads are 4 interradial, sac-like, rotruding pouches separated by narrow intervals in the perradii.
nuished by having 32 instead of 16 velar lappets. It is found and Pacific, but is disinguished by having 32 instead of 16 velar lappets. It is found along the Pacific coast of

Phacellophora ornata Haeckel.

 p. 247 , plate 2 , figs. $3,4$.

Disk quite flat, with a slight dome-shaped aboral apex; it is about 350 mm . in diameter, and the marginal lappets droop vertically. The surface of the exumbrella is covered with
 mall nematocyst-warts. Gelatind rigidance of disk quite thick ging 16 marginal sensewween the 32 ocular lappets. Ocular lappets about twice as long as velar ones, but not so numerous, there being 2 to 4 velar between pets. The clefts separating the ocular lappets are deeper and more distinct than those separating the velar lappets. Over 100 long tentacles arise from the floor of the subumbrella in a broken circle in 16 inter-rhopalar clusters at a short distance inward from The 5 to 0 tentacles between each successive pair of sense-organs vary considerably in size, the longest being about equal to belldiameter; they are hollow and flat, and there is a wavy double thickening along the centripetal narrow edge, which is covered with nematocysts. Mouth simple and 4cornered, situated at center of
subumbrella. The are each about as long as belldiameter, their free edges much folded. They are highly flexible and contractile. The gonads are found in 4 interradial, crumpled sacs which project outward from the floor of the subumbrella at the sides of the mouth. Central stomach 4 -lobed, being extended outward in the radii of the 4 genital organs, very much as is the case in Aurellia. A large number of radiating canals run outward from the periphery of the central stomach to the circular canal, which lies at a considerable distance inward from bell-margin.
The radiating canals in the radii of the sense-organs branch and anastomose, while those in the tentacular radii are simple and slender. There are about 2 to 5 of these simple canals between each successive pair of anastomosing canals. Circular canal broad somewhat sinuous, and it lies under the insertions of the ring of tentacles. Outwardly it gives rise to a blind canal
each velar lappet and a trident-shaped canal to each sense-organ and its adjacent lappets. Usually the outer ends of these blind canals are simple, but occasionally they bifurcate (fig. 395).
bistening transparent, the radiating and circular canals slightly brown in color. Sense-organs glistening white. Nematocyst-bearing edges of tentacles white. Central stomach orangeellow, the mouth-arms citron-yellow, the gonads yellowish-brown.
This species is found at Eastport, Maine, and in the Bay of Fundy. It is very rare, and has been taken there only by Verrill and Fewkes. In 1908 Browne describes a closely allied I am gratefully indebted to Professor Verrill for permitting me to make drawings (figs. 395) of the type specimen preserved in the Peabody Museum at Yale University. This species is closely related to P. ambigua, but is distinguished by its greater number of velar lappets and radial-canals. The velar lappets are also shorter than in P. ambigua

Genus Poralia Vanhöffen, 1902.

generic characters
Ulmaridx closely related to Phacellophora. With numerous simple radial-canals, and a ring-canal, which on its outer side gives rise to blindly-ending vessels. The gonads form a ring

of outpocketings in the lateral wall of the stomach extending entirely around the base of the stomach, but interrupted at frequent intervals by vertical thickenings of the stomach wall. Tentacles (?) There are no subgenital pits in the floor of the subumbrella. The mouth parts re imperfectly preserved but appear to resemble those of Cyanea or Phacellophora.

This genus was founded by Vanhöffen, but his single specimen was imperfect and immare, and our koud by the Albatross in the eastern part of the tropical Pacific. The type species is Poralia rufescens Vanhöffen, from the Indian Oce Pacific.

Poralia rufescens Vanhöffen.

In Bigelow's largest specimen the bell was 250 mm . in diameter. There were apparently I6 rhopalia, although some of these were destroyed so that the exact number was not determined with certainty. The rhopalia resemble those of Phacellophora and are set within deep
niches. The sense-club is covered by a prominent scale, beneath which it stands in an almost vertical position. There is a deep exumbrella sensory-pit above each sense-club. There appear to be no distinct velar lappets, the bell-margins being only slightly wavy, excepting for the deep, rhopalar clefts. In Bigelow's large medusa 41 radial-canals arise from the periphery of the circular central stomach, but two of these anastomose so that only 40 extend to the ringcanal centripetal to the zone of the rhopalia. The ring-canal gives inse to a dindy-ending diverticdiverticulum in the radius of each sense-club and to , like the rhopalia, bears a striking resemblance to Phacellophora. The mouth parts appear also to be similar to those of Phacellophora but are not well preserved in any specimen yet captured. The gonads form a nearly continuous ring around the periphery of the subumbrella floor of the stomach. This ring is not truly con-

Fris. 396 .-Poralia uufescens, after H. B. Bigelow, in Mem. Mus. Comp.
Zool at Harvard College.
inuous, however, but is interrupted by 18 or 19 thickened, vertical ridges in the stomach-wall. The gonads themselves thus consist of 18 or 19 outpocketings of the stomach-wall projecting outward. The numerous, simple, gastric cirri are arranged in a single line arising from the tomach-wall on the inner side of the genital organs. The subumbrella is reddish-brown, the gonads being paler. The tentacles were lost in all of the specimens the wnown nothing of them.

Vanhöffen's specimen came from a depth of about 350 fathoms between Queen Emma Harbor and Siberut Island, Indian Ocean, and the two

The radial-canals in this medusa appear to increase in number with growth, for Vanhöffen's specimen which was only about 60 mm . wide had 21 canals, while Bigelow's 250 mm . wide specimen had 4r. Vanhöffen's medusa had 7 or 8 (?) gonads, and both he and Bigelow believe that the young medusa is probably octoradial.

Subfamily AURELINE L. Agassiz, 1862

The numerous tentacles and lappets arise from the sides of the exumbrella above the margin. Gonads are invaginated sacs with external subgenital cavities. 4 simple or bifurcated mouth-arms.

 Aurelia,

generic characters.

Ulmaridæ with a simple, central mouth-opening which is surrounded by 4 well-developed radially situated, unbranched mouth-arms or palps. 8 maroinal sense-organs. The tentacle are small and alternate with an equal number of short lappets. Both tentacles and lappet arise from the sides of the exumbrella a short distance above bell-margin. The bell-margin is divided into 8 or I6 broad, velar lobes. The central stomach gives rise to a number of branched, radiating canals which anastomose and are connected by a marginal ring-canal. There are 4 interradial gonads and 4 well-developed, subgenital pits.

The name "Evagora" which takes precedence over "Aurellia" was applied to Forskål's medusa persea which is wholly unrecognizable, as is also "Ocyroë," and these names mus aurita of Europe. They spell the generic name Aurellia
The species of this genus are among the most widely distributed of Scyphomedusæ, being found in all oceans and all latitudes. They are most abundant along the shores of continent and large islands and are comparatively rare in the open ocean far from land. It is possible hat the fossil Medusina costata from the lower Cambrian of Sweden is an Aurellia.
Although fully a dozen species of Aurellia have been described I believe that there are but
reasonably well-defined types. Of these A. aurita is of world-wide distribution. A labiata is found in the Pacific, and a third fairly well-defined species is A. maldivensio, described by H. B. Bigelow from the atolls of the Maldive Islands in the Indian Ocean. The distinctions between many of the "species" are not well ascertained, and there are numerous varieties or local races. A. aurita is subject to great individual variation and some of these chance variations have been described as species
The species of A urellia display much individual variability, and studies upon this subject have been carried out by Ehrenberg (I835), Romanes (r876-77), Browne (1894-95), Duncker, Sorby, Herdman, Unthank (I894), Ballowitz (1898), and Hargitt (I905). Good reviews of the results of the earier of these investigations are given by Bateson, 1895 (Materials for the Study Harvard College, vol. 30, No. 2). The abnormal individuals of Aurellia aurita are peculiar in that they generally preserve the radial symmetry of the disk, even though the number of segments be changed. Radially symmetrical abnormalities appear to be about twice as numerous as are irregular ones. This law applies also to the variations of the Leptomedusa seudoclytia pentata (see vol. II, p. 278).

Browne, 1894 and 1895, discovered that congenitally abnormal ephyræ of Aurellia survived fully as well as normal ones, and also that the abnormal ephyre were no more abundant in 1892 than they were when Ehrenberg studied them at the same.place in 1834. Evidently the bnormal individuals do not acquire any fixed tendency to perpetuate their own peculiarities
ather than those of their normal parents, and thus the race as a whole maintains itself unchanged. About 22 per cent of the ephyræ and of adult Aurellia have either more or less than 8 marginal sense-organs.
Most interesting physiological studies have been carried out upon Aurellia by Romanes, 1885 (International Scientific Series, vol. 49, etc.), and also by Eimer, 1878. These studies show that the marginal sense-organs of Aurellia are locomotor centers which control the at various rates, but the fastest working sense-organ controls all the others and forces then to beat at its own rate. Parts of the subumbrella deprived of marginal sense-organs will still

Synopsis of the Races or Species of Aurellia.

	Aurellia aurita and its varieties.				
	A. aurita Péron et Lesueur.	A. cruciata Haeckel (This is only a variety of A.aurita.	A. colpota Brandt =A. coerulea von Lendenfeld.	A. flavidula Péron et Lesueur (this is only a variety of A aurita) $=$ A. haban ensis Mayer.	A. hyalina Brandt.
Shape of umbrella.	Flatly rounded to hemispherical.	Flatly rounded to hemispherical.	Flatly rounded to hemispherical.	Flatter than a hemisphere.	Flatter than a hemi sphere.
Widthin in m.	50 to 400	50 to 400	100 to 120	140 to 25	60 to 80
Height in mm .	20 to 125	20 to 125	40 to. 50	50 to 90	20 to 30
Form of margin of umbrella.	The 8 marginal sense-organs set in shallow clefts, 8 simple entire, velar lobes.	Sense-organs set in deep clefts.	Sense-organs set in shallow clefts	Sense-organs set in clefts which may either be deep or shallow, being very	Sense-organs set in wide, deep clefts.
$\begin{array}{\|l} \begin{array}{l} \text { Number of velar } \\ \text { lobes. } \end{array} \\ \hline \end{array}$	8 simple.	8 simple.	8 slightly notched in middle.	8 simple.	8 simple.
$\begin{aligned} & \text { Form of mouth- } \\ & \text { arms. } \end{aligned}$	Small,lancet-shaped, with complexly folded margins, but without latera lappets.	Small,lancet-shaped, with complexily folded margins, bu without latera appets.	Large, complexly folded, with lateral lappets. Very wide their bases.	Thick, lancetshaped, with complexly folded edges.	Similar to A. aurita.
Length of moutharms in terms of radius of umbrella (r).	$r-\ldots$	Only a little löger than 0.57 .	$r+$	r+	$r+$
Length of genitalradius in terms of radius of umbrella.	One-third r.	Half t,	Half r.	One-third to half r.	One-third to onefourth r.
Number of primary branches arising from each tal sinus.	5 to 7 , quite wide.	5 to 7	5	7	5
Character of adradial canals.	Simple, unbranched.	Simple, unbranched.	Anastomosing with other canals, or simple and unbranched.	Simple, unbranched.	All canals branched.
Coior.	Very variable. Milky to light-violet, rose-red, or almost colorless. amost colitess.	- Very variable. Milky to light-violet rose-red, or almost colorless.	Light rose-red tentacles and gonads deeper in color.	Variable as in A. aurita.	Variable. Transparent to reddish
Where found.	Atlantic coast of Europe and in Mediterranean Vast swarms.	Atlantic coast of Spain and Mediterranean.	Indian Ocean to	Atlantic coast of North America, Greenland to Florida and West Indies.	North Pacific.
Remarks.	Development through alternations by strobilization.			Development as in A. aurita.	

respond momentarily by contractions to all sorts of stimuli, electrical, chemical, thermal, or mechanical. Small parts of the disk with sense-organs attached pulsate somewhat more slowly than large ones. Romanes succeeded in maintaining the rhythmical movement of the medusa in parts of the disk without marginal sense-organs by stimulating weakly with a con stant or alternating current of electricity

Romanes also found that a stimulus too weak to causé a response would if repeated eventually give rise to a contraction. This phenomenon is known as the summation of stimuli, Medicine, Newy York, vol. that Lee and Morse, igro (Proc. Soc. Experimental Biology and Medicine, New York, vol. 7, p. 38), find that this effect may be due to a rise in irritability, brought about by the action on the living substance of small quantities of certain products of metabolism, especially carbon dioxide and lac
concentration are important factors in fatigue.

	Aurellia aurita and its rarieties.			A. solida Browne.
	A. dubia Vanhoffen.	A. vitiana Agassiz and Mayer (immature).	A. marginalis L.Agassiz (This is only a variety of A. flavidula.)	
Shape of umbrella.	Flatter than a hemisphere.	Hemispherical. -	Flatter than a hemisphere.	Hemispherical.
Width in mm .	$\mathrm{r}_{3} \mathrm{O}$		160 to 300	80
Height in mm.	43		60 to 120	$40 \quad$.
Form of margin of umbrella.	As in A. flavidula.	As in A. flavidula.	As in A. flavidula.	As in A. aurita but sense-organs are set in deep clefts and point upward toward exummargin. The 8 senseclubs are thus di- rected 90° away from direction assumed by A. aurita.
Number of velar lobes.	8 simple.	8 simple.	8 simple.	8 simple.
Form of mouth-arms.	Mouth-arms give rise to lateral lappets.	Simple lancet-shaped.	As in A. flavidula.	Closely similar to those of A. aurita. The sub genital ostala are very small circular opening only 2 mm . wide.
Length of mouth-arm in terms of radius of umbrella (r)	Two-hirds r.	Half to two-thirds t.	r-	r+
Length of genital-radius in terms of radius of umbrella.	One-third r.	One-fourth to one-third r.	Hali $r+$.	Four-fifths r.
Number of primary branches arising from each interradial genital sinus.	7	5 to 7 , all very slender.	7. As in A. flavidula.	As in A. aurita.
Character of adradial canals.	All canals branched.	Simple, unbranched.	Simple, unbranched.	As in A. aurita.
Color.	$? \quad$	Gonads, mouth-arms, and tentacles lilac. Other parts colorless.	Gonads often light rosered, or blue, but colors variable as in A. favidula.	Gonads salmon-colored other parts translucent whitish.
Where found.	Persian Gulf.	Fiji and Tonga Islands, South Pacific.	Florida Keys, Key West Havana to coast of Maine.	Maldive Islands, Indian Ocean.
Remarks.	Described from a single specimen.	Smarrs in harbors.	(?) Derelopment slightly different from that of A. flavidula (see Hiyde 1894)	Distinguished by its peculiar sense-organs.

Krukenberg, 1880, finds that Aurellia aurita contains 95.34 per cent of water and only .66 per cent of solid matter.
The planula larva commonly develops into a scyphostoma which gives rise to a number of ephyrx through strobilization. In aquaria, however, Haeckel, 188I, finds that the planula may develop directly into a single medusa without passing through the scyphostoma-stage. In this case the ocular lobes and tentacles grow outward around the gastrula mouth, and the gelatinous substance of the planula becomes that of the medusa. In other cases the scyphotoma develops into a single medusa which remains attached by a pedicel formed of the basal Herrouard rest (Comptes Rendus, Paris tome It5 60 , Ibid auromedusa,
Hérouard, 1907 (Comptes Rendus, Paris, tome 145, p. 601 I, Ibid., I 1908 , tome 147, p. 1336), inds a peculiar scyphostoma in an aquarium at Roscoff, which may possibly adverse conditions of confinement, although he calls it \mathcal{I} aeniolhydra roscoffensis. It develops lateral buds, and in addition to these peculiar cysts on its pedal zonie.

	Aurelia Iabiata and its varieties.			
	A. labiata Chamisso and Eysenhardt.*	A. "clausa" Lesson= young of A. labiata.*	A. limbata Brandt.	A.maldivensis Bigelow.*
Shape of umbrella.	Hemispherical or flater.	Hemispherical or fatter.	Hemispherical of Aater.	Flatter than a hemisphere.
Width in mm.	200 to 300	80 to 100	200 to 300	250
Height in mm.	100 to 200	40 to 50	100 to 150	90.
Form of margin of umbrella.	Margin with 16 deep clefts, 8 ocular, 8 interocular, 2 velar lobes in each octant.	Margin with 16 clefts, 2 velar lobes in each octant.	Margin with 16 deep clefts, 2 velar lobes in each octant.	16 velar lobes with very shallow interocular clefts.
Number of. velar lobes.	I6, two in each octant.	$\mathrm{r} 6, \mathrm{two}$ in each octant.	${ }_{1} 6$, two in each octant.	16, two in each octant Very shallow clefts be tween lappets.
Form of mouth-arms.	Thick, pyramidal, short, folded when mature, but slender and simple, as in A. aurita when young.	Small, thin, folded.	Triangular.	Lipslarge, wide, flexible curtain-like and folded with their free edges lined by small tentacles.
Length of mouth-arms in terms of radius of umbrella (r).	Two-thirds to threefourths r.	?	$r-$	r-
Length of genital-radius in terms of radius of umbrella (r)	One-fourth r.	$?$	Half r.	One-fourth to one-third
Number of primary branches arising from each interradial genital sinus.	As in A. aurita.	$?$	9	8 to to branched and anastomosing. A together about 48 tral stomach.
Character of adradial canals.	Usually simple, but may branch dendritically (without anastomos ing).	?	All canals anastomose.	Simple, unbranched.
Color.	Light violet, gonads darker in color.	Ovaries, canals, tentacles rose-red to wine red.	Umbrellá bluish, tentacles and margin orange-brown. Velar lappets brownish. black.	Variable. Bell delicate dilac. Canals and tentacles violet-pink. Gonads violet or blue.
Where found.	Pacific coast of North America to Malay Archipelago.	South Pacific coast, New Ireland, Australia.	North Pacific coast of Siberia.	Maldive Islands,Indian Ocean, in January.
Remarks.	.	Too imperfectly known for determination. Probably identical with A. limbata or A.labiata \qquad		This form is chiefly distinguished by its curtain-tike calling those of Cyanea

[^0]These cysts or statoblasts are formed during resting periods in about 15 days and are incased In a chitinous envelope. After one of these statoblasts is formed the scyphostoma moves a short distance and leaves it behind. The chitinous envelope may then burst and the cyst develops into The early development of the planula and scyphostomà has been elaborately studied by Goette, Claus, Hyde Smith, Friedmann, and others and the results of these researches will be reviewed under Aurellia aurita.
Friedmann, 1902, finds that in the scyphostoma the tentacles develop in
$4,8,16,24$; and that the 12 and 20 -tentacle conditions are intermediate phases
Aurellia aurita Lamarck.
Plate 67, fig. 4; plate 68, figs. I to 4
Sedusa aurita, LinNMÊ, 1746 , Fauna suecica, No. 1287; 1747, Westgöta Resa, tab. 3 , fig. $\overline{2}$; 1758, Syst. Nat., Ed. io, tomus 1

 ie Entwicklung der Scyphomedusen, Leiepigig. 64 pp., 24 fign. (controversy over the manner of dere fict

tad. Wissen Soc. New South Wales, vol. 9, P. 280.
 rauna and Geog. Maldive and Laccadive Archipela goes, voi. 2, p. 959.

Aurelia aurita from America

urelia sex-ovalis, Mörch, 18 57, Beskriv. af Groiland, p. 95.

Dimensions in mm. of a mature specimen of Aurellia aurita from Naples, Italy, captured May 30, 1900. Bell-radius, 85; length of mouth-arms, 75; width of genital cross, 51 . (See ext-figure 397.)
The following is a description of the American form of Aurellia aurita, which has been commonly called " A. flavidula"

Adult medusa.-Disk 140 to 250 mm . wide, 50 to 90 mm . high. When expanded it is flatter than a hemisphere, but when contracted it becomes hemispherical. Gelatinous substance tough, thick at center, but thin at edge of disk. 8 marginal sense-organs at the bottom
of shallow niches between the 8 broad velar lappets. Each sense-club is bluint and contains an ectodermal, proximal ocellus on the exumbrella side, a cup-like pigmented eye composed of both ectoderm and entoderm on the subumbrella side, and a distal entodermal mass of crystalline concretions. It is partially protected above by a bridge-like web stretching between the adjacent lappets. Lappets of considerable size on both sides of the club.

A single median pit projects downward from exumbrella surface just above the senseclub. Small and numerous tentacles arise from sides of disk at a slight distance above margin and alternate with an equal number of small, elongate, marginal lappets which similarly arise
from the sides of the disk above the projecting margin. Tentacles hollow with longitudinal strands of muscles down their subumbrella sides, and with broken holl, with longitudinal

Fro. 397 - Aurellia aurita. Dawn by the author, from a specimen
found at Naples, Italy by Dr
Zoological Station, May on their exumbrella sides. Margin of disk entire and simple except at places of the 8 It forgans, where it is broken by notches lyingms a narrow, velum-like structur pets. Cow the tentacles and marginal lap rounded by 4 thick stiff selatinous mouth arms, the 8 free edges of which are much arms, the 8 free edges of which are much numerous, small tentacles. These free edges inclose a median trough or gutter which extends down the middle of thelowe side of each mouth-arm. These mouth arms are each about as long as the radiu of the disk; at their bases they are broad and their free margins are here greatly indented and folded in sinuous lines bor dered by small tentacles. The 4 interradia with the mouth-arms and their positio is marked on the floor of the subumbrell by 4 thick, horseshoe-shaped thickening of the gelatinous substance, in the center of each of which there is a deeply sunken, subgenital pit. The radius of each of these horse-shoe-like regions is about one-third that of the disk itself.

Goodey, rgog, finds 4 interrradial, canal-like grooves in the subumbrella floor of the stomach leading from the gonads to the folds of the oral arms and serving to conduct the genital products away from the gonads.

The central stomach occupies a 4-lobed space, its outline being determined by the periph eral edges of the 4 horseshoe-like genital cavities, and it gives rise to a complex system o
radiating canals extending from edges of stomach to circular canal at bases of marginal tentacles. 8 separate, straight, non-anastomosing, adradial canals and 4 radial and 4 interradial, pitchfork-shaped systems of anastomosing canals; each of these systems consists of a single, straight, median canal and a pair of branching, lateral canals, which arise on either side of the median canal very near the periphery of the central stomach-cavity. The lateral canals each give nise to 3 to 5 radiating branches which anastomose sparingly and extend outward to the circular canal. These branches decrease in caliber and anastomose mor frequently as they approach the circular canal. The gonads are found in 4 horseshoe-shaped
convoluted ridges on the subumbrella floor of the 4 genital cavities. The bases of the genital ridges are beset with numerous, small, gastric cirri

The gelatinous substance of the disk is of a translucent milky-white or yellowish-brown; spermaries usually slightly pink. In old individuals the gonads in both sexes are white. Common from Greenland to the West Indies. At Eastport, Maine, it is mature in Sepember, and at Tortugas, Florida, in May.

The American medusa is closely allied to Aurellia aurita of Europe and is at most merely a variety of the latter. It may possibly differ from its European representative in he thickness and rigidity of the mouth-arms, which are very broad at their bases and often Naples and consider the American and European medusx to be identical -
A very complete description and numerous figures of the American medusa are given by L. Agassiz, 1860-62, Cont. Nat. Hist. U. S., vols. 3 and 4
Development.-The ova are dehisced from the gonads into the interradial grooves from which they enter the median gutter of the mouth-arms and are here retained in small pouches near margins of free edges of mouth-arms and finally set free in the planula stage. Minchin, 1889, gives a good description of these brood-pouches. Segmentation total and unequal, and a may be formed in either one of two different ways: (r) by the invagination of a small part of the blastula wall combined with the ingression of numerous cells from various parts of the wall of the blastula; (2) by invagination of the wall of the blastula, aided only occasionally by the ingression of cells from the blastula wall. According to Smith, 1891, however, the gastrula is formed from a small invaginated region in the wall of the blastula, from which there develops a single, continuous layer of cells, which layer finally completely fills the cleavage cavity, thus giving rise to a 2-layered embryo with an open blastopore. Smith denies that this process is aided in the least by the ingression of cells from the wall of the blastula into the blastocoel. He inds, indeed, that a few cells are occasionally seen to wander into the blastula cavity, but these tions in the mode of forming the gastrula have been seen in other Scyphomedusæ, having been observed by Conklin in Linuche, and Hyde and McMurrich in Cyanea. The blastopore then closes and the entoderm becomes a closed sac entirely enveloped by the ectoderm. The larva then becomes ciliated and swims actively about as a pear-shaped planula, which soon attaches itself to the bottom by the wide anterior end. A crater-like depression (œesophagus) formed of ectodermal cells then appears at the narrow (now the upper) end of the animal, and this presses down upon the entodermal sac. The first pair of radial stomach-pouches is formed from the entodermal sac, while the second pair is formed, at least partially, from the ectoderm of the cup-like depression. The mouth breaks through and 4 tentacles appear. The larva ported by a central shelf of gelatinous substance. These septa extend from the margin of the mouth to the lower end of the stomach-cavity. They form the 4 primary, gastric filaments of the future ephyra, and there are no septa in the central stomach of the medusa.

As we have stated, it appears from the researches of Götte and of Hyde that the two original pairs of stomach-pouches are derived alternately from the ectoderm of the cesophagus and from the entoderm of the primitive stomach, although Hyde shows that the lower aboral floor of the 2 øesophagus pouches is formed at least partially from entoderm. Through division of the 4 original stomach-pouches we have finally 24 pouches, 10 entodermal and 14 mainly ectodermal, as follows: 6 diammetrically opposite perradial, 4 interradial, and the adjacent adradial pouches are entodermal. (See Götte, 1887.)

One must remember that R. P. Bigelow, 1900, finds that the 4 primary stomach-pouches of Cassiopea xamachana are wholly entodermal, and Hadži, Igo\%, finds that this is also the case in Chrysaora. Moreover, according to Hadži there is no ectodermal invagination in Cinrysaora M and acquires 8 , 16, and finally 24 long tentacles. The ephyræ are developed through strobili zation of the scyphostoma.. As many as I_{3} annular constrictions may develop below the zone of
oral tentacles, and then an additional set of tentacles usually develops below the last constriction. As many as 12 disk-like ephyra may be cast off one by one, and finally the scypho stoma is left greatly reduced in size, but still provided with a corona of tentacles. After all develops irregular stolon cast off through this terminal budd's the servations of other mode of development are discussed in the description of the genus Aurellia.

The young ephyra has 8 marginal sense-organs flanked by 6 lappets, the ocular clefts frst a shich are only about half as wide and deep as the 8 alternating clefts. The throat is at frst a simple 4 -cornered tube and the lenticular central stomach gives rise to 16 simple, separate, radiating canals which extend outward in the radii of the tentacles and sense-organs. The tips elongate at the 4 perradial corners and form laterally) in the 8 adradial spaces. ring-canal is formed by the radial-canals becoming T-shaped at their free, distal a peripheral sides of each adjacent T fusing. As the animal increases in at their free, distal ends, and the etally inward from the ring-canal even before the ring-canal is complete, and fuse with the 8 perradial and interradial canals, which thus become pitchfork-shaped. (See fig 4 plate 67) Full descriptions and very complete figures of the development of the various stages in Aurellia flavidula are given by L. Agassiz, 1860-62. Hyde, 1894, gives a detailed and careful account of the development of the planula and of the early stages of the scyphostoma, and Smith has investigated the process of formation of the gastrula. Claus and Götte, whose
views are at variance, studied the ews are at variance, studied the development of the scyphostoma and its gastral pouches. of the water may underoo considerable change within the body of the Aurellia remain practically constant. The yet the amount of NaCl less sodium and considerably more potassium than does normal sea-water also about the same amount of calcium as is found in sea-water, but less macnesium and to 36 per cent less SO. He gives the composition of Aurellia, Cyanea and of sea-water as follows:

	Na	Ca	K.	Mg.

27 mature specimens of Aurellia from Tortugas, Florida, all collected at random from a single swarm on May 4, 1906, were of dimensions and proportions as follows

Among 27 specimens--	Radius of umbrella.	Length of mouth-arms.	Radius of genital cross
Largest specimen.			$\begin{aligned} & 32 \mathrm{~mm} . \\ & 25 \mathrm{~mm} . \\ & 33 \mathrm{~mm} . \end{aligned}$
Smallest specimen.			
$\xrightarrow{\text { Average specimen....... }}$ Proportions of specimen			
With smallest mouth-arms...............			
Average length of mouth-rrms.			
Proportions of specimen with largest gonads. Smallest			
Average gonads.			${ }^{0.36 r}$
			$0.42 r$

Thus individuals among these 27 specimens displayed all of the characteristics of A urellia aurita, " A. Alavidula," " A. marginalis," and " A. habanensis"; and all should be called A. aurita Lamarck, this name being the oldest. I wholly agree with Vanhöffen, igo2, that

Aurellia aurita forma' "marginalis."

 fign. 1-35

This variety is larger than A. flavidula, being often more than 300 mm . in diameter Mouth-arms smaller than in A. favidula, being less than bell-radius in length. Genita pouches fully half as wide as bell-radius, instead of being A. flavidula. The gonads are of a pale rose color in both sexes

Professor Hyde has made a careful study of the development up to the scyphostoma stage. The gastrula results from a peculiar process of delamination. Some of the cells of the one-layered blastula divide and their inner halves thus become free and wander into the
According to Hyde, however, the development of A. Alavidula is itself subject to much variation and the gastrula in this form also results in some cases from delamination. Hence the peculiar features of the development in A. marginalis are different only in degree from those observed by Hyde in A. flavidula and are not of specific importance. Moreover, we must bear according to Götte and to Hein, Igoo, the gastrula of A aurita is also formed invagination. Staleness of the water in ordinary aquia may profoundly alter the norma course
I am convinced that "Aurellia marginalis" is only a variety of " A. favidula," which is itself specifically identical with A. aurita. For example, among 27 mature specimens of Aurellia found in a single swarm at Tortugas, Florida, on May 4, 1906, if we call r the radius of the umbrella, the length of the mouth-arms ranged from 0.89 to $1.04 r$, the average being $0.95 r$; also the radius of the genital cross ranged from 0.36 to $0.51 r$, the average being $0.42 r$ Agassiz called specimens of Aurellia with arms longer than r and the genital radii less than $0.5 r$ " A. Alavidula"; those having arms less than r and genital radii more than $0.5 r$ he is true not only along the Florida reef, but also in the harbor of Eastport, Maine, where I found some individual Aurellias that conform to the proportions of " A. marginalis." It is safe to conclude that "A marsinalis" is merely a manuscript species and should disappea henceforth. L. Agassiz described it from the Florida reefs.

Aurellia aurita ="Aurellia dubia" Vanhöffen

Aurelia dubia, VAshiöffen, I888, Bibliotheca Zoologica, Bd. I, Heft. 3, PP. 20, 24
The disk is I 30 mm . wide and 43 mm . thick. The 8 marginal sense-organs are set in deep niches, as in A. flavidula, and there are 8 broad, marginal lappets. The 8 mouth-arm are only two-thirds as long as the disk-radius. Genital-radius one-third of disk-radius; radaing canals extendoutwid from ench Persian Gulf, March

Described from a single specimen by Vanhöffen. Distinguished by its short moutharms and its having only 8 velar lobes instead of I 6 as in A. labiata.

Aurellia solida Browne.

Aurelia solida, Brownr, 1905, Fauna and Geog. Maldive and Káccadive Archipelagoes, vol. 2, plate 960, plate 94, figs. i, of. Maldive
This medusa differs from Aurellia aurita in its marginal sense-organs, but in all othe respects the characters of A. solida are well within the common ranges seen in A. aurita. In Aurellia solida each marginal sense-organ arises from the inner end of a deep groove subumbrella side. In Aurellia aurita the bordered by the lateral laped toward the umbrell margin. In Aurellia solida, however, the sense-club points upward toward the exumbrella and therefore at right angles to the position assumed by the sense-club in Aureliza aurita

In Aurellia aurita there is a well-developed covering membrane or "hood" which extends over and above the sense-club on the exumbrella side, but in Aurellia solida the "hood" is a
mere ridge or ledge-like mass of tissue covering the concavity in which lies the sense-club. The dorsal sensory-pit in Aurellia solida is a deep triangular funnel with a long, narrow mouth, is quite uninke the shallow exumbrella sensory-pit of Aurellia aurita.
Rita, but the 4 circular, subgenital ostia are each only 2 mm . in diameter, whereas in A urellia they are usually much larger. The oral arms are not quite as long as the radius of the umbrella. The genital radius is about 0.4 that of the umbrella.

Maldive Islands, Indian Ocean, and 15° west of Madeira in the North Atlantic.

Aurellia labiata Chamisso and Eysenharát.

Fis. ${ }^{388 .- \text { Aurellia labiata. Drawn by the author, from specimens collected by the U. S. Bureau of }}$
Fisheries steamer Albatross at Masbate Anchorage, Philippine Islands, April 21, 1 goos.
A, oral view of medusa with one mouth-rm cut off. B, bell-margin seen from diew of medusa with one mouth-arm cut of. B, bell-margin seen from exumbrella side showing
being matd migration of lappets and tentacles. C, section of bell-margin, the areas cut across

This species is distinguished by having 16 velar lobes separated by deep median clefts instead of 8 simple lobes as in A. aurita. The canal-system is similar to that of Aurellia aurita, canals than in A. aurita. The bell

8 plain-edged, velum-like folds spanning between the sense-organs. The tentacles and marginal lappets have migrated a considerable distance up the sides of the exumbrella, above the velar margin. A longitudinal strand of muscle-fibers extends down the subumbrella side of side When the medusa is old the mouth-arms become much thickened and folded as in Aurellia aurita. The dimensions of three specimens obtained by the U. S. Fisheries Bureau stea

	Mm.	Mm.	Mm.
Diameter of umbrella.			
Diameter across zone of gonads.	57	53	42
Length of each mouth-arm.	74	75	${ }_{52}$

Aurellia labiata is distinguished from A. aurita by having 16 notches in its bell-margin, by its peculiar velum-like, inter-rhopolar, subumbrella membranes representing the true bellmargin, and by the very small size of its subgenital ostia. The mouth-arms are also shorter than one commonly observes them to be in A. aurita.

Aurellia maldivensis H. B. Bigelow.
Aurelia maldivensis, Bigeriow, H. B., rgo4, Bull. Mus. Comp. Zool, at Harvard College, vol. 39 , P. 26t, plates 6,8, figs. 22, 23, 27 .
Bell 250 mm . wide and about one-third as high. 8 marginal sense-organs, flanked by small, pointed, ocular lappets. 8 wide interocular or velar lobes are each divided into 2 by

Frc. 399--Aurellia maldivensis, aterer H. H. Bigelem, in Bull. Mus. Comp. Zool. at
a very slight, central depression, thus forming 16 lobes as in A. labiata. "About 500 small tentacles alternate with an equal number of small, dorsal lappets as in Aurellia aurita. The 4 mouth-arms, or palps, are large and curtain-like, recalling those of Cyanea; their lips are complexly folded and bear numerous, short tentacles. About 48 radial-canals arise from not branch stomach, the 8 canals to the mand occasionally anastomose, so that about 175 canals reach the circular vessel at the margin. The 8 canals to the sense-organs each give off 2 side-branches in the immediate neighborhood of the sense-organ. These side branches extend to the circular vessel. The 4 gonads are small and horseshoe-shaped and have wide subgenital pits.

The bell is of a delicate lilac, the canals and tentacles. pinkishiviolet, and the mature gonads bright violet. The color is, however, variable, some specimens being blue.

Abundant in the lagoons of the atolls of the Maldives, Indian Ocean, in January.

The comparative dimensions and other details are stated in the table giving a synopsis of the species of Aurellia.

In its cleft, velar lobes it recalls A. labiata, while in its wide, curtain-like mouth-arms it stands alone among Aurellias. Indeed its peculiar mouth-curtains are all that separate it from A. labiata

Genus AUROSA Haeckel; 1880

Aurosa, Harckri, 1880, Syst. der Medusen, P. 559
The type species and only known form is Aurosa furcata Haeckel, from the tropical Indian Ocean.
generic characters.
The medusa is similar to Aurellia but the 4 mouth-arms are bifurcated at their outer ends. There are 24 anastomosing radial-canals and a marginal ring-canal. 4 interradial gonads, 8 rhopalia, 8 velar lobes, and numerous small tentacles as in Aurellia.

Aurosa furcata Haeckel.

Aurosa furcaita, Hakckil, 1880, Syst. der Medusen, P. 559, taf. 33, fign. 7, 8 .
Bell flat, shield-shaped, 80 mm . wide, 30 mm . high, 8 velar lappets as in Aurellia aurita 8 marginal sense-organs. Tentacles small, numerous, arising from exumbrella side of margin

Fics 400.-Aurosa furcata, aiter Haeckel, in Das Syst. der Medusen.
as in A. aurita. Gonads as in A. aurita. Genital radius half the bell-radius. Central stomach gives rise to 24 radial-canals, all of which give forth anastomosing side-branches. There 5 radial-canals, 4 interradial, and 16 adradial canals. Thus each genital pouch gives rise to The peripheral network of anastomosing canals becomes narrower in its mesh the nearer the vessels are to the marginal ring-canal. The 4 mouth-arms resemble those of Aurellia aurita, but each one bifurcates near its outer end. Their curtain-like margins are much olded.

Found near Cocos Islands, Indian Ocean, southwest of Sumatra.

Order RHIZOSTOME Cuvier, 1799

 $\stackrel{\text { P. } 208 .}{ }$
 Rhizostomidide, Mscasccootrz, 1829, Syst. der Acalephen, p. 42 .
characters of the order.
Scyphomedusx without marginal tentacles*, and with numerous mouths which are borne upon 8 adradial, fleshy, branched arm-like appendages which arise from the center of the tentacles.

The rhopalia and marginal lappets of the Rhizostomæ are similar to those of Semæos tomex. The Rhizostomæ are the most highly differentiated Scyphomedusæ, and owing to the generally tough consistency of their gelatinous substance and their large size they hav often been found preserved as fossils, especially in the lithographic slates of Solenhofen and enus R. They are tropical forms and none are known from the polar regions. of the genera are confined to the warm waters of the Indo-Pacific region. A few are found in the tropical Atlantic and the Mediterranean. The Rhizostomæ develop, in so far as we know, through strobilization from scyphostomæ. Phylogenetically they are derived from the more simply organized Semrostomex, but they have lost their marginal tentacles, though in Lobonema the marginal lappethe Rhizostomx has a simple cruciform, central mouth, as in the Semæostomex, but the 4 rays of the cross soon fork at their outer ends and then grow outward in the form of 8 adradial, fleshy, mouth-bearing appendages, which branch in a characteristic manner and constitute the so-called "mouth-arms." The primitive central mouth may then be obliterated by the coalescence of its lips, but numerous other mouth-openings remain in the gutter-1ike grooves which extend down the ventral sides of the mouth-arms; and these mouth may also extend over parts of the dorsal sides of the mouth-arms. The semæostomous genus Aurosa with its 4 bifurcated mouth-arms, which in other respects resemble those of A urellia, appears to be a connecting link between the Semæostomex and the Rhizostomæ.

The gonads of the Rizostomæ are invaginated as are those of Aurellia, not protrusive
genera such as Cassiopea there are 4 sepa

rate genital sacs which project into the rate genital sacs which project into th
central stomach-cavity of the medusa. In many Rhizostomæ such as in Cotylorhiza Mastigias, etc., the inner ends of the 4 primitive, genital bags may coalesce and their walls break down, forming a cruciform cavity beneath the stomach of the medusa and not connected with the gasFtg. Aor.-Diagrams illustrating the fusion of the 4 primitive
genital cavities (A) to form a single cruciform cavity (c). $\begin{aligned} & \text { form cavity beneath the stomach of the } \\ & \text { medusa and not connected with the gas- } \\ & \text { trovascular cavity, but opening to the }\end{aligned}$ surrounding ocean through the 4 interradial genital illustrated in the 3 diagrams of figure 401 In A, we see 4 separate, interradial, genital sacs (G) projecting into the stomach-cavity (S), as in Rhizostoma and Cassiopea. In B we see these 4 sacs fused at their inner ends as in some species of Cephea (Netrostoma); and in C we find the walls broken down in the fused regions forming a cruciform genital space lying beneath the stomach as in Cotylorhiza, Crambessa, Mastigzas, etc.

The umbrella of the Rhizostomea resembles that of their more simply organized ancestors the Semæostomex. It is usually dome-shaped and covered with nematocyst-warts. The bell-
*Excepting in Lobonema, gen. norr, wherein the marginal lobes are converted into long, tapering tentacie-like organs.
lappets and rhopalia are in all respects similar to those of the Semæostomex. The muscula system of the subumbrella is well-developed and these forms are usually vigorous swimmers, arhoug in Cassiopea we find that the meduse commonly remain upo may bring uppermost, and the pulsations. of the umbrella serve mainly to stir up currents whic At the food to the mouths.
At the center of the subumbrella we find a thick, disk-shaped, gelatinous projection called the arm-disk, for the 8 adradial mouth-arms arise from its lower side. This arm-disk is merely the lower wall of the stomach which has become thickened in order to give support to the heavy gelatinous mouth-arms. In all forms, however, having a unitary, cruciform, genital cavity, an open space lies between the arm-disk and the stomach so that the armone from another by the 4 -rayed genital porticus, which opens to the outer world beparated radial ostia which alternate with the columns.
The cruciform, cen

The cruciform, central stomach dips downward into these perradial columns and bifurcated or 8 simple canals arise from the stomach and extend downward into the 8 adradial mouth-arms, giving off numerous branches to the mouths. The 16 canals to the scapulets, when these are present, arise from these 8 mouth-arm ducts, as do also the canals to the arm-disk, which fuse into 4 and finally into a single, central duct at center of arm-disk. The central stomach also gives rise to canals which radiate outward through the subum-ring-canals, or by networks of
The facility with
permitted certain physioloch some of these medusæ may be maintained alive in aquaria has the rhythmical pulsation of Cotylorhiza and Rhizostoma, and Mayer, 1906, 08, carried out experiments upon Cassiopea. Bethe finds that the pulsation resembles that of the vertebrate heart in all important respects. The pulsation-stimulus is nervous in nature, and the "all or none" principle applies to medusx as it does to the vertebrate heart, as does also the phenomenon of the refractory stage of Marey, 1876. A definite interval of time elapses between the passage of the nervous stimulus and the response of the muscles, and the pulsation is a reflex due to a constantly present stimulus, the response to which is periodic, because after
the nerves have responded to the stimulus they become incapable of reacting to it until after a definite interval of rest, this resting period being called the refractory stage.

Bethe, 1908, 09 , in his study of Rhizostoma pulmo comes to conclusions
ffects of the ions of sea-water upon pulsation, which are in accord with those of Mayer to the (See Rhizostoma pulmo.)

Mayer, rgo6, rgo8, working upon Cassiopea, found that the sea-water is a balanced fluid, neither stimulating nor inhibiting pulsation. This is due to the fact that the stimulating calcium, potassium and of sea-water is counterbalanced by the inhibiting influences of the colcium, potassium, and magnesium. The stimulus which produces pulsation is due to the and above its concentration in the surrounding sea-water. This excess of sodium is main tained by the constant production of sodium oxalate in the terminal entoderm of the senseclubs. This oxalate precipitates calcium to form the calcic oxalate crystals of the sense-club and sets free sodium chloride the sodium ion of which acts as a nervous stimulant. Details of these researches upon pulsation are given in the accounts of Cotylorhiza tuberculata, hizostoma pulmo, and Cassiopea xamachana.
Cassiopea the greater the number have studied regeneration in Rhizostoma. Zeleny stated that in Cassiopea the greater the number of arms removed up to 6 the more rapidly does each and tissue has a greater ability to absorb nutriment than have the normal that the regenerating and that in consequence of this the body shrinks in size in direct proportion to the tissues, the regenerating arms, the growing arms reducing the body as do cancer cells in their proliferation. Stockard also shows that cuts near the center regenerate more rapidly than those near the margin of the disk, this being in accord with Morgan's law that the deeper the level of the cut the more rapid the rate of regeneration. In Rhizostoma pulmo Hargitt found that two rhopalia sometimes regenerate in the place of one which he had removed, and I have observed
the same thing in Cassiopea. In Cassiopea xamachana R. P. Bigelow showed that the rhopalia are derived from every alternate tentacle of the scyphostoma, the other tentacles degenerating wholly. I find that in this medusa when the rhopalium regenerates it gives rise to a short lateral branc
Many observations have been carried out upon the embryology of Rhizostomæ, and eviews of these researches will be found in the descriptions of Cassiopea xamachana, Cotylorhiza tuberculata, Rhizostoma pulmo, Mastigias papua, Phyllorhiza punctata, and Stomo lophus meleagris. Claus, Goette, R. P. Bigelow, Kowalevsky, von Lendenfeld, and Vanhöffe have been especially active in these researches.

Haeckel, 1880 , considered the presence or absence of a unitary, cruciform, genital cavity to be of great systematic importance and sought to separate families upont that this is a matter Claus, wan the same species we may find in some cases 4 of no great import, for in different indiva a cruciform genital cavity, and still others may have a more or less complete coalescence and breaking apart of the partitions in some quadrants and not in others. It is therefore evident, as was first clearly shown by Claus, 1883 . Organisation und Entwick. Medusen), that the conditions exhibited by the genital sacs affor no criteria for the distinction even of genera, much less of families. Indeed, Haeckel's system leads to the separation of closely related forms and the close approximation of remotely elated forms, and is quite artificial.

Claus, I883, 1886, and Vanhöffen, 1888, have attempted to separate the families of Rhizostomæ upon the distinctions afforded by the manner of branching of their mouth-arms. p. 208), distinguished nine families as follows:

Rhzoostoxs: Scyphomeduse without marginal tentacles and with 8 adradial mouth-arms.

Cassiopeide: Armodiisk fatat. Arms long, irreguilarly branched with appendages. Radial-canals numerous. No central Craunostomit
mot

Cepheida: Arm-disk wide and fat Alt Ams dicitoromousty forked, with 2 of the axial,

mouth. . Arr-disk style-shaped, elongate, with 8 pairs of 1ateral "shoulder rufles" or "scappulets", Proximal
Stomolophidd :
parts of the arms fused into a tube, distal parts branched. 16 radial-canals, with well-developed det-work of conpatstof of he ards f fused into a tube, dime
necting vesels. No central mouth.

winged, with dorsal mouths. I6 radia-canals. Centripetal network of canals well-dereloped. No central mouth.
Catrostyidea: Arm-disk very wide, elongate, and style-shapec. Lower arm 3 -winged with dorsal mouths. No centripCatosovyidide: Arm-disk very wide, elongate, and style-shaped. Lower arm 3 -w

A simpler system is proposed by Vanhöffen, 1888 (Bibliotheca Zoologica, Heft 3), who divides the R hizostome into 7 families:

Rhizostomata simplicia: Mouth-arms simple and unbranched. All of these are apocryphal, having been seen only by Hacelel and Ferkes.
Dichootoma: Mouth-arms dichotomously forked, with lateral expansions.

Trigonarar Identical with the Rhizostomata triptera.
Lorifera: Mountherms elongate, lash-like, and triangular in cross-section; with mouths developed along the 3 angles Scapultata: Mouth-arms with simitar-shaped "scapuletes" or "rumfles" projecting from their dorsal sides.
As was pointed out by Maas, Igo3, Vanhöffen's Triptera and Trigona are identical And should be united, thus reducing his families to six. Schultze, 1898 , showed that the mouth-arms of the "Dichotoma" of Vanhöffen are not forked at their outer ends, but give rise to 2 broad, longitudinal, lateral lamellw, which may branch secondarily. With these modifications. Vanhöffen's system affords the readiest means of classifying the Rhizostomæ being based upon the mutations of the most conspicuous organs, the mouth-arms.

Maas, 1903 (Syphomedusen der Siboga Expedition, p. 89), proposes another system based upon the character of the muscle-system of the subumbrelia, the presence or absence of ocelli on the sense-clubs, the character of the canal-system and of the mouth-arms. Maas' system is as follows:

Arcadomyaria: The subumbrella muscle are arranged in feather-like arcs. Mouth-arms elongate and irregularly pinnate
in their branching. Rhopalia with ocellus and without an exumbrella sensory pit. Redial-canals twice as sumerous

 (A) Mouth-arms 3 -winged, or derived from this type. There are 3 groups of the Cyclomyyaria, as follows

(B) 8 rhopalar canals extend to the the hel-margin and 8 in the inter-r-hopalaf radii end in the ring-canal. On its outer
side, the ring-canal gives of a networks of anastomosing vesels, and on its inner side it gives rise to another network side, the ring-canal gives of a network of anastom osing vess
which ends binindy without connecting with the stomach.
(I) Mouth-2rns

The Arcadomyaria of Mass is only a new name for Vanhöffen's Rhizostomata pinnata, the Radiomyaria are equivalent to Vanhöffen's Rhizostomata dichotoma, and the Cyclomyaria system is erroneous in some respects; for example the thopalia of Cassiopea xamachana have pigment spots while those of Cassiopea frondosa have none; similarly Crambessa tagi has ("ocelli") pigment spots but Crambessa mosaica has none. It is therefore evident that the presence or absence of "ocelli" does not afford a suitable criterion for the separation even
of genera. The exumbrella sensory pits may have furrows in one species of a genus and of genera. The exumbrella sensory pits may have furrows in one species of a genus and
be simple in another as in be simple in another, as in Rhopilema esculenta and R. verillii. In my opinion the older and simpler system of Vanhöffen is to be preferred to this complex scheme proposed by Mas. In view of the observations of Schultze and of Mas, we may amend Vanhöffen's system
follows: as follows:

Rhizostomata pinnata: Rhizostomx with 8 separate, elongate, linear mouth-arms which give rise to pinnately or com-
plexly arran ged side stanches (figs. 4,5 , and 7 , plate 69 . The circular muscles of the subumbrella tend to be ples1y arangec side branches (1sss. 4 , ,5, and 7 , plate 69 . The circular muscles of the subumbrella tend to b

 radial-canals
follows
Ceptea
 Potyrhizaza L. Acassszz, 8862 . Exumbrella with a central depression and with radiating furrows

 Mouth arms without scapulets. The genera are tery closely related and are as follows:

 Lychnor $h z a z$ Has
to Crambessa.

 Nof the origg-canal connects with the stomach.
Pseudorhiza voN LENDENPELD, 8882 . Similar to Mastigias but without lateral clubs or flaments upon the
 canals end blindly without reaching the stomach.
Phyllorhiza L. Acassiz, r862. Mouth-arms with lateral filaments, but without clubs as in Lychnorhiza. Canal-

 annular separation between them.
Lobonemate gen. nov. Marginal lappets elongated to form tentacles-like organs. Mouth-arm membranes perRhizostomata lorifera: 8 mouth-arms, very elongate, whip-ike, and and rian yular in crosper-section, with frilled mouths developed along the angular edges of the arms (fif. . 49 , p . 6 gry) The cylindrical upper parts of the arms are rudimen-
tary and partialy fused one to another by gelatious arches spanning between them and connecting them with the
 Thysanostoma L. Acass.
out lengh of arms.
 of the mouth-arms, leaexing the middle part of the arm naked.
Rhizostomata scapulara: Each mouth-arm bearas spair of simititar-shaped appenda ges (scappulets) which arise from the
outer side near the base of the arm and bear frilled mouths (fy. 42 IT, p. 6o7 . The circular muscles of the subumbrella

 lolog their sides 1 eavis
which remains open. Rhizostomata sitmplticiac. Rhizostomx with unbranched mouth-arms. These apocryphal forms are described by Haeckel
and by bemkes from alcoholic specimens of small size. They are apparentiv immature or iniured specimens. No
 that we shoukd drop these meduse from further consideration, but in the faint hope that some may be discovered.
I have given descriptions of them based upon the statements of Hackel and Fewkes.

rhizostomata pinvata Vanhöfen.

hizostomata pinnata, VANHöffren, 1888, Bibliotheca Zoologica, Bd. I, Heft. 3, p. 40.—Mass, r903, Scyphomedusen der Sibogat
 Arcadomyaria, MAAs, Tgo3, Scyphomedusen der Siboga Exped., Monog. 11, p. 88; 1907, Ergeb. Fortschritte der Zool., Bd. I,

Rhizostomous meduse with 8 linear, pinnately, or complexly branching mouth-arms.

genera

Cassiopea Péron and Lesueur, 1809. More than 8 rhopalia

Genus torevma Haeckel, 1880 .

 I903, Scyphomedusen, Siboga Exped,, Monog. II, p. 43 .
The type species is Toreuma dieuphila, described by Péron and Lesueur from the Indian Ocean.
generic characters.
Rhizostomata pinnata with 8 adradial, linear mouth-arms which branch pinnately or Rhizostomata pinnata with 8 adradial, linear mouth-arms whichse
complexly, and the main side branches also branch. 8 marginal sense-organs.

This genus is closely related to Cassiopea and is distinguished only by having 8 rhopalia, whereas Cassiopea has more than 8. Haeckel is the only modern naturalist who has seen any of these forms. They all come from the Indian Ocean.

Toreuma dieuphila.

 \qquad
It is probable that Haeckel's \mathcal{T}. "thamnostoma" and "T. gegenbauri" are only growthstages of Péron and Lesueur's. "Cassiopea" dieuphila. I therefore present the description of the three forms side by side in order that they may readily be compared. Haeckel enjoyed the opportunity of studying Péron and Lesueur's original specimen preserved in Paris.

	Toreuma dieuphila=Cassiopea dieuphila Péron and Lesueur.	Toreuma "gegenbauri" Haeckel.	Toreuma "thamnostoma" Haeckel.
Diameter of bell in mm.	60 to 80	60	90
Shape of bell.	Hemispherical (contracted !) Exumbrella with coarse warts.	Flatter than a.hemisphere, withou papilla.	Flatter than a hemisphere. Exumbrella with small warts.
Number of marginal lappets.	96. In each octant 10 short, rectangular, velar, and 2 very small, ocular lappets.	80. In each octant 8 short, rectangular, velar, and 2 very small, ocular lappets.	120 to 160 . In each octant 14 to 18 short, rectangular, velar, and 2 very small ocular lappets.
Length of moutharms in terms bell-radius bell-radius (r).	Less than $r \operatorname{long}$ (contracted ?)	If to 0.57 long.	Nearly 2 rong.
Number of branches of each mouth-arm.	6 to 8 wide, flat, main sidebranches.	8 to 12 flattened main sidebranches.	I2 to 16 cylindrical, main sidebranches.
Appendages upon mouth-arms, between mouths.	Numerous small, and to to 20 large, club-shaped vesicles.	Numerous small clubs and a very large one at base of each arm, half as long as arm itself.	Numerous club-shaped vesicles. Smoother than in T. dieuphila, and not longer than width of marginal lappets. (Large clubs lost ?
Color.	Bell brownish-red, with white spots on the lappets. Gonads and clubs white.	Bell brown (?) An elongated, white spot upon lappet.	Bell dark-brown with numerous white spots. Abaxial surface of arms yellowish-brown. Clubs white.
Where found.	Northwest coast of Australia, in the Indian Ocean.	Tropical Indian Ocean.	Indian Ocean.

Genus CASSIOPEA Péron and Lesueur, 1800 .

The type species is Medusa andromeda Forskål, called C. forskalca by Péron and Lesueur $=$ C. andromeda, Eschscholtz) of the Red Sea and Indian Ocean. The first species described by Péron and Lesueur, 1800 , is called Cassiopea dieuphila. Haeckel, 1880, however, places this in the genus Toreuma.
generic characters
Rhizostomata pinnata with 8 (4 pairs of) adradial, complexly branched mouth-arms the lower or ventral surfaces of which bear numerous mouth-openings and vesicles. There are 4 gonads and 4 separate subgenital cavities. There are more than 8 marginal senseorgans and twice as many radial-canals as sense-organs. The radial-canals are placed in communication one with another by means of an anastomosing network of vessels. A definite ring-canal may or may not be present.

Tilesius, 1834 , figured 4 species of Cassiopea and represented each of them as having 8 subgenital cavities. Relying upon the figures of Tilesius, L. Agassiz, 1862, separated the genus Polyclonia, having but 4 subgenital cavities. Later researches have demonstrated that all the known species of these medusæ have normally but 4 subgenital cavities, and
should therefore be placed in the oenus-Cassiopea. Haeckel, 1880, attempts to separate Cassiopea from Polydonia by calling modusx with 16 maroinal sense-organs Cassiopea, while those with 12 of these organs are called Polyclonia. The number of marginal sense organs is, however, very variable, not only amono different species of these medusx but also among individuals of the same species, and therefore can not be used as a means of establish ing generic distinctions.
The medusx of this genus are all inhabitants of warm oceans, and are found in greatest abundance in the tropical coral regions of the East Indies and Red Sea. R. P. Bigelow find that C. xamachana from the West Indies develops through the monodiscus strobilization of a scyphostoma and the young ephyræ of this species and of C. frondosa have a simple forms the Rhizostomæ have evidently been derived. The rhopalia of the ephyra are derived from the bases of each alternate tentacle of the scyphostoma, the other tentacles degenerating.

The number of "species" of Cassiopea has been multiplied greatly, owing to the remark able color-range and variability in other respects of these medusæ. These color types appea to be local, and the Cassiopea medusx of almost every new region of the tropics are nearly certain to be described as new species" based on color peculiarities. It is therefore impos sible, at present, to classify the forms of Cassiopea with any degree of certainty.

The blue and amber-green coloration of these medusæ is due to the presence of com mensal plant organisms. Colasanti, 1886, describes the blue pigment matter as zoocyanin Maas, 1903 , attempts to separate the genus into two cohorts; one, consisting of C.mertensi; by its long, cylindrical, pinnately branched mouth-arms. The other group consists of C andromeda and its varieties: C. depressa and C. depressa var. picta. This latter cohort has irregularly branched, short, flat mouth-arms. An idea of the range in color-pattêrns of these meduse may be obtained from an inspection of plates 70° to 72 which exhibit photographs of a few of the varieties of Cassiopea xamachana, all taken in the course of an hour from the moat of Fort Jefferson, Tortugas, Florida
Stockard demonstrated that in C. xamachana the nearer the injury is made to the cente of the disk the more rapid the rate of regeneration. He also found that the more arms we remove, the more does the central disk shrink during the growth of the regenerating arms, an he thus fos do cancerous tissues in their aboub Mayer finds that the rhythmical pulsation
this stimulus is caused by the presence of a slight xamachana is due to a nervous stimulus above the concentration of this ion in the surrounding sea-water. This excess of the sodiun ion is due to the constant formation of sodium oxalate in the sense-club, and this oxalat precipitates the calcium chloride of the sea-water to form the calcium oxalate crystals of th sense-club and sets free sodium chloride.
R. P. Bigelow finds that the vesicles between the mouths of C. frondosa serve to capture prey and to thrust the food into the mouths.

Cassiopea andromeda Eschscholtz

Bell flat, shield-shaped, 100 to 120 mm . wide, 20 to 30 mm . high. 15 to 18 , usually 16 , maroinal sense-organs. A variable number of short, blunt lappets. In each paramere are I to marginal sense-organs. A variable number of short, blunt lappets. In each paramere are ito
6 , usually 3 , velar flanked by 2 ocular lappets. 8 mouth-arms, wide, flat, and hardly as long as

	C. andromeda	$\begin{aligned} & \text { C. andromed } \\ & \text { var. zanzi- } \\ & \text { barica. } \end{aligned}$	$\begin{aligned} & \text { C. andromeda } \\ & \text { Yar..alalayen- } \\ & \text { sis. } \end{aligned}$	$\begin{aligned} & \text { C. andromeda } \\ & \text { var. maldiv- } \\ & \text { ensis. } \end{aligned}$	$\begin{aligned} & \text { C. andromeda } \\ & \text { var. acyclob } \\ & \text { lia. } \end{aligned}$	C. polypoides.	C. xamachana
Shape of bell.	Flat.	Flat.	Flat.	Exumbrella concave.	With low central dome.	$\begin{aligned} & \text { Sucker-like } \\ & \text { corcarity on } \\ & \text { exumbrella. } \end{aligned}$	Exumbrella concare.
Number of rhopalia.	$\begin{gathered} \mathrm{r} 2 \text { to } \mathrm{r} 8 \text {, sus- } \\ \text { ally } 46 . \end{gathered}$	16	16	12 to 19 , us- ually 16.	16		II to 23 , us- ually about
Number of marginal lappets in each paramere.	${ }_{\text {cose }}^{\text {5. occasionally }}$ it	8	3, 5, 7, or 9	70 to	5		
Length of mouth-arms in terms of bell-radius (r)	Less than r.	Less than r.	Less than r.	Less than r.	$0.6 r$	$r+$	Ito 0.25 r
Vesicles and filaments among mouths.	$\begin{aligned} & \text { Many small; } \\ & \begin{array}{l} \text { Sor morer } \\ \text { Sarge, club- } \\ \text { shaped vesi- } \\ \text { cles. } \end{array} \end{aligned}$	Many small, 5 large clubs. in C. andromeda.	$\begin{aligned} & \text { Many small, } \\ & \text { 2 to } 3 \text { large } \\ & \text { clubs. } \end{aligned}$	Linear, hand- shaped, and ribbon- shaped ap- pendages. large.	8 large, many small filaments.	Large and small clubs and filaments.	Large and small ribbonlike filaments.
Where found.	East coast of Africa, Red Sea to the Malay Arch ipelago.	Zanzibar coast, East Africa.	Malay Archipelago.	$\begin{aligned} & \text { Maldive Is- } \\ & \text { lands, Isdian } \\ & \text { Ocean. } \end{aligned}$	Amboina Malay Archipelago.	Coral flats of Red Sea.	West Indies to Morida.

	C. frondosa.	C. ornata.	$\begin{aligned} & \text { C. ornata var. } \\ & \text { digitata. } \end{aligned}$	c. depressa.	C. depressa var. picta	C. mertensii.	C. ndrosia.
Shape of bell.	Flat.	Flat.	Flat.	Flat.	Flat.	Rounded with out a concavbrella.	Exumbrella concave.
Number of rhopalia.	12	16	16	16	14 to 16		18 to 2
Number of marginal lappets in eac paramere.	5	5.	$\begin{array}{\|c} \text { Variable, } \\ \text { about 5. } \end{array}$	9	Variable, to it usually.	8	
Length of mouth-arms in terms of bell-radius(()	0.75 r to r .	${ }^{r+}$	I to 0.5	Less than r.	Less than r.	1 to 0.5 T	1 to 0.5 r
Vesicles and filaments a mouths.	Only flat leafshaped vesicles.	$\begin{array}{\|l} \text { Very small } \\ \text { clubs. } \end{array}$	Very small clubs.	Very small dubs. clubs.	Very small clubs.	Very large clubs.	Small leaf shaped vesi-
Where found.	West Indies to Florida.	Pelew Islands New Guinea \qquad	Malay Archipelago.	Coast of Mozambique, Mad Africa Madagascar	Red Sea.	Caroline Is- $^{\text {s }}$ lands.	cles. Fiji I slands. \square

bell-radius: 4 to 6 fat, short side branches arise from each arm in a tree-like manner and thes in turn give off side branchlets. Numerous small and 5 or more large, club-shaped vesicles on arms. 4 small subgenital ostia. The largest 2.to 3 times as long as width of main branches of Color very brilliant and va
milk-white spots, between which are dark, radial stripes. Bell-maroin to violet-brown, with The milk-white spots on the exumbrella are disposed as follows each sense-organ and a small, white spot upon each lappet. Thus there are $80(5 \times r 6)$ small
spots and 16 large ones, 96 in all. Mouth-arms olive-green to reddish-brown, spotted with white.
This East Indian species ranges from the Red Sea to Sumatra, giving rise to a number of color varieties and local races, many of which have been described as distinct species. Keller, 1888, records its having wandered into the Süez Canal from the Red Sea. Hartlaub gives a good description of this species from Dibuti, East Africa

Cassiopea andromeda var. zanzibarica Chun.

Casionee andromeda var. anvzibarice, Chuv, 1896, Mitheil, Naturhistorischen Museum, Hamburg, Bd. 13, P. 17.
This resembles C. andromed in most respects, being 40 to 90 mm . in diameter and with a flat disk. But it is said to be distinguished from C. andromeda by having 6 velar and 2 ocular lappets between each successive pair of sense-organs instead of 5 lappets as in the typical ceda, being 10 mm . long. The color is also different, but quite variable. The exumbrella is sually brownish-red with 16 to 17 smoky-gray or white radial streaks, which commence at the outer edge of the central concavity of the exumbrella and fork over the lappets. Some specimens have 3 white spots over the velar lappets between each successive pair of sense-organs. Mouth-arms light whitish-red beset with small brownish-white clubs. The large central filaments are black. Zanzibar coast, July to August. This is certainly identical with C. andromeda.

Cassiopea andromeda var. malayensis Maas

Cassiopeja andromeda var. malayensis, MaAs, Tgo3, Scyphomedusen der Siboga Expedition, Monog. 11, pp. 40 , 43; taf. 4 , fign.
This medusa is said to be distinguished by having $1,3,5,7$, or more velar lappets between each pair of ocular lappets. Mouth-arms are slightly shorter than bell-radius and compressed dorso-ventrally. A few large, isolated, upon all of the mouth-arms. Indeed, there are usually but these ar the large clubs upon the mouth-arms of any individual medusa. The umbrella may become more than 200 mm . in diameter, although such large specimens are rare. There are normally 16 small, marginal sense-organs, each containing an entodermal concretion and a distal pigment spot. Young medusx have about 32 ocular and 16 velar lappets, but as growth proceeds the velar lappets increase by division so as to become $3,5,7$, or more times s many as in the young medusa. The mouth-arms are compressed dorso-ventrally, those of acyclobbia laterally. They-branch quite irregularly, in a tree-like manner.

Both male and female medusæ are described by Maas, who records numerous examples ing with C. andromeda.

Cassiopea andromeda var. maldivensis.

Carsiopea andromeda var. moldivensis, Browne, moo5, Fauna and Geog. Maldive and Laccadive Archipelagoos, vol. 2, p. 962 .
The disk is about 75 mm . wide with a central concavity on the exumbrella. The marginal sense-organs range from 12 to ig but are usually about 16 . The marginal lappets are very indistinct and range from about γ to ro between each successive pair of sense-organs. There are 4 pairs of complexly branching mouth-arms which project slightly beyond the umbrella margin. The proximal branches of the mouth-arms are generally alternate in disk-shaped, flat, spatula-like appendages over the mouth-arms. These are adjacent to the oscula. There are also cylindrical or somewhat flattened linear appendages and hand-shaped appendages, which are almost leaf-like and may be 25 mm . long and 9 mm . wide. There are not more than 5 to 6 of these cylindrical or hand-shaped appendages on each of the 8 mouth-arms. At the center of the mouth-arm disk there is a single long appendage which may either be cylindrical or hand-shaped.

The 4 subgenital ostia are very small and triangular in shape, about 3 mm . wide. The gonads are similar to those of Cassiopea xamachana. The peripheral canal-system consists
of a radial-canal to each sense-organ and an equal number of intermediate radial-canals. These radial-canals are put into communication one with another by means of an anastomosing network of vessels, without any distinct ring-canal.

The medusa is dark-green without spots or pattern of any sort. This green color is due to an infesting alga, one of the Zooxanthellce. The chlorophyl is readily dissolved out in alcohol.

This medusa is abundant in muddy bottoms in shallow bays and back waters at Febidu, Maldive Islands, Indian Ocean. It is a well-marked variety of C. andromeda being distinMaldive islands, Indian Ocean. It is a well-marked variety
guished by the hand-shaped appendages on its mouth-arms.

Cassiopea andromeda var. acycloblia Schultze.

Bell flat with low central dome (?) at middle of the exumbrella. - 16 marginal sense-organs and 80 (5×16) marginal lappets. Exumbrella flecked with 16 large, oval, radially placed, white spots above the sense-organs. A wide ring of white binds these spots together. There
is also a small, white fleck on the exumbrella side of each lappet. Those of the interradial is also a small, white fleck on the exumbrella side of each lappet. Those of the interradial
lappets fuse with the white ring. Mouth-arms only three-fifths as long as bell-radius. Diameter of arm-disk less than disk-radius. The mouth-arms branch dichotomously each with one large and many small filaments. Amboina, Molucca Islands.

Cassiopea polypoides Keller.
 Cassiopea polypooides, KeIILIR, 1883 , Zeit. für wissen. Zool., Bd. $\mathbf{3}^{88}$, p. 632 , taf. 36 , 37 , fign. $6-23$

Disk flat, shield-shaped, 100 to 150 mm . wide. A well-developed, sucker-like depression at center of exumbrella, the thickened, outer edge of which is 15 to 20 mm . inward from bellmargin. Margin of umbrella is thin, but at the center there is a disk-like thickening of the gelatinous substance of the exumbrella. There are 16 marginal sense-organs each with a
red-brown ectodermal pigment spot and a terminal entodermal mass of concretions. 80 short, rounded, marginal lappets, 3 velar and 2 ocular in each of the 16 parameres. The thick mouth-arm disk is octagonal with 8 equal sides. The 8 mouth-arms are about as long as radius of umbrella and project beyond the bell-margin; they are somewhat higher than wide at their distal ends. Each arm usually gives rise to 3 pairs of alternately arranged, pinnate branches, with frilled mouths on their under sides. There are numerous clubs and filaments on the under sides of the mouth-arms; the largest filaments being over 30 mm . stomach 4 -sided. 32 radiating canals extend outward from the stomach, I6 to the senseorgans and 16 to intermediate parts of the margin; these 32 vessels connect one with another by an anastomosing network of vessels, but there are no specialized ring-canals.

Exumbrella light-brown with a broad, white ring which gives out $16 \cdot \mathrm{cog}$-wheel-like, forked branches on its outer edge in the radii of the 16 sense-organs. There is also a short, white, radial spot on the exumbrella side of each marginal lappet. 16 dull white, spoke-like pigment areas in the gelatinous substance of the exumbrella extend outward from the edges of the central thickening to near the margin in the radii of the sense-organs. The suctorial being sky-blue, oreenish-blue, horny-yellow, translucent white or rose-red. In one variety eing skybrell is live colored with . Keller distinguishes five varieth indistinct radiating spots. fm filaments as follows:

```
\(C_{y a n e a . ~ W i t h ~}^{5}\) or 6 large, sky-blue or green-blue filaments on each mouth-arm. The white oral tutts are numerous,
the clubs sarer. This is is the commonest form.
```



```
Albida. The rarge flamentsts are wwistede, never frittened, theire color is homy-yitelow or translucent. Common.
Rosea. Exumbrella olive colored, radial spots indistinct. Some of the flaments
Herbocece. The mount-arm appendages poorly developed. No filaments. The mouths of the arms large. Rare variety.
```

This medusa was found in large swarms by Keller on the shallow coral flats of the southern parts of the Red Sea. It differs from the typical C. andromeda in the thick-rimmed sucker of the exumbrella, and the long, laterally compressed arms. Keller describes it in detail with good figures. In common with other Cassiopeidæ it lies upon the bottom with its oral surface uppermost. Kel.er draws comparisons between its habits and structure and those of actinians,
etc. This medusa is probably only a local variety of C. andromed a, but the thick, suckerlike disk at the middle of the exumbrella appears to distinguish it.

Cssiopea yamachana R. P. Bigelo

Plate 69 , figs. 4 to 8 ; plates 70 and 7 ; ; plate 72 , the seven lower figures

Cassiopea wamachana, Brgriow, R. P., I892, Zoolog. Anzeiger, Bd. 15, P. 212; Johns Hopkins University Circulars, 8892 ,

The disk is usually about 150 mm . in diameter, although Bigelow records one from Jamaica 240 mm . wide. It is flat and with rounded edges. There is a well-marked con cavity at the middle of the exumbrella, the diameter of which is about equal to the disk radius. It enables the medusa to cling firmly to any smooth surface as by a sucker.

The number 16 . For example, in 25 meduse taken at random and ranging in size from 23 to 14 about 16 . For example, in 25 medusx taken at random and ranging in size from 23 to 148 ,
mm ., one had I 3 marginal sense-organs, I had I 4 , I had I 5 , I had I , 5 had I 7 , I had I 8 , 2 had 19, 2 had 20 . I have seen one medusa with II and one with 23 sense-organs. The number is independent of the size of medusa, being determined at time of strobilization.

The sense-organs are short, blunt, and club-shaped, and are set within niches protected above by a shelf-like membrane spanning the cleft between the adjacent lappets. There is no exumbrella pit above the club. Each sense-organ contains a terminal mass of entoderma crystals and an aboral cup-shaped ectodermal ocellus having reddish-brown pigment. There are 5 short, blunt, rounded lappets between each successive pair of sense-organs; the 2 lappets
adjacent to the sense-organs are only about half as wide as the others. The mouth-arm disk, which projects as a flat plate from the center of the subumbrella, is only about two-thirds a wide as the disk-radius. 4 pairs of adradial mouth-arms arise from this disk. Each of thes 8 mouth-arms is about 1.25 times as long as radius of bell and projects somewhat beyond bell-margin. These mouth-arms are triangular in cross-section, their aboral surface being broad and flat; they each give rise to io to 15 alternate, primary branches, which in turn give rise to secondary branches. These branches are commonly longer than in C. frondos and are also longer and stouter than in C. andromed a Eschscholtz and more slender and have more primary branches than in C. polypoides Keller. In the axil of each primary branch of the adjacent branch. There are also 5 to 13 large, ribbon-shaped filaments upon the oral surface of the mouth-arm disk. The largest filament is at the center and is fully one-fourt as long as the bell-diameter. The filaments decrease successively in length out over th mouth-arms; those at the tips of the arms being only about one-seventh as long as those the center. In addition to the filaments there are numerous short club-shaped, nematocyst bearing vesicles scattered among the mouths.

The mouths are found upon the oral (uppermost as the medusa lies upon the bottom) sides of the primary and secondary branches of the mouth-arms, and to some extent upon

mouth-arm disk in the full-grown medusa, although they are commonly found near the edges
an of the disk. The mouths are fringed with a multitude of fine, waving tentacles

There are 4 small, deep, oval-shaped, interradial subgenital pits, and 4 separate in-
正 radial sides by the 4 sac-like gonads. The axial ducts of the 8 mouth-arms empty into this radial sides by the 4 sac-like gonads. The axial ducts of the also gives rise to twice as many central stomach at the 4 principal radil. The central stomach also gives rise to twice as many
radial vessels in the subumbrella as there are marginal sense-organs. Every alternate vessel extends to a sense-organ, the others going to intermediate parts of the rim. Ali of these radial vessels are put into communication one with the other by numerous anastomosing branches; but there is no well-defined circular vessel such as is figured by Haeckel in Cassiopea ornata. There is a well-developed zone of circular muscle-fibers in the outer half-radius of the subumbrella. These have a more and more cuspate trend as we near the center of the disk, there being twice as many cusps as there are radial vessels, the outward convexities of the cusps being between the vessels.

Trers of commensal plant-cells within the gelatinous substance of the disk near the due to If the medusa be maintained in darkness for a month this green color disappears, leaving the animal a pale, translucent blue-gray. Around the outer edge of the central concavity of the exumbrella is a wide, dull white circle, edged on its inner side with faint gray-brown. A more or less Y-shaped, radial, white stripe extends outward from the broad ring in the radii of the sense-organs, the sense-organ being in the center of the crotch of the Y . In addition a single, radial stripe extends outward down the middle of the exumbrella side of each marginal lappet. Occasionally these radial stripes are more or less separated from the broad, white
circle. Conspicuous spoke-like, white stripes extend outward in the radii of the sense-organs. circle. Conspicuous spoke-like, white stripes extend outward in the radii of the sense-organs. The gelatinous substance from the subumbrella toward the exumbrella surface. The mouths, the gelatinous substance from the subumbrella toward and vesicles are olive or olive-brown, the vesicles and filaments being of a decided green. Among the many color varieties there is a rare one in which the'spoke-like, dull white spots are diamond-shaped, and there is no broad, white ring on the exumbrella. The whole medusa is more translucent than are the more abundant meduse with the white ring. They are also smaller than the common form. Curiously enough this color variety bears a striking resemblance to Cassiopea ndrosia Agassiz and Mayer, from the Fiji Islands, South Pacific. Various forms of its color patterns are shown in the photographs in plates 70 to 72 taken from life by the author.

I find that Cassiopea can thrive well in darkness for more thàn a month, hence the medusa is not dependent upon its commensal plant cells for the oxygen it requires. In this
connection Whitney, 1007 (Biol. Bulletin, vol. 13 , No. 6, p. 29 r), finds that if green hydra connection Whitney, 1907 (Biol. Bulletin, vol. 13, No. 6, p. 291), finds that if green hyara
be placed temporarily in a 0.5 to 1.5 per cent solution of glycerin, the green alge (Chlorella be placed temporarily in a 0.5 to 1.5 per cent solution of glycerin, the green algæ (Chlorella
vulgaris) pass out through the mouth. Then if the hydra be replaced in water it will grow normally, but remains clear and does not regain the green bodies even when placed in an aquarium with alga.

This medusa was discovered in great abundance by Dr. R. P. Bigelow in a salt-water lagoon called the Great Salt Pond, near Port Henderson, Kingston Harbor, Jamaica. It is also exceedingly common in the salt-water moat of Fort Jefferson, Tortugas, Florida, where it is found upon the weedy bottom throughout the summer; and salt lagoons along the Florida Reef as far north as Miami
The early stages of the development of the egg into the scyphostoma are as yet unobserved, but the process of the formation of asexual buds by the scyphostoma has been elaborsides of the calyx of the scyphostoma near the point of origin of the stem. Scyphostomx are never found with more than two buds attached. When two are present the older is always attached to the apex of the younger bud. The bud is at first hemispherical, hernia-like; then elongated, and finally spindle-shaped. The ectoderm, entoderm, and mesogloea of the bud are produced from the corresponding layers of the parent scyphostoma, and the 4 ectodermal, septal muscles of the bud are derived from out-growths of one or both of the septal muscles
of the parent which lie in the interradii adjoining the perradial area of bud formation. The

Usually the 4 perradial tentacies are soon supplemented by the 4 interradial ones, and in about 3 days after they first appear the 8 tentacles are as long as the proboscis of the scypho stoma. 8 adradial tentacles then develop. The number and arrangement of the tentacles is however, very variable but finally there are about 32 . In any case there are twice as many tentacles as there are to be rhopalia. The full-grown tentacles are tapering, slender, and about 3 times as long as the body of the scyphostoma. Half of them are half ste more hastric pouch are
alter formed by evagination from ectoderm and ento but are wholly entodermal as Hadži finds them to be in Chrysaora, and simply separated on from another by the ingrowth of the 4 interradial septa. At first the septa are simple, entire buttresses of entoderm with an axial sheet of mesogloea, but later each septum becomes perfor ated immediately under the interradial tentacles, thus forming a ring-sinus. There are 4 long tudinal strands of septal muscles, I in the mesoglœa of each septum.

The septa bear no definite relation to the exact position of the interradial tentacles, for these may arise on either side of or in the plane of a septum. In this respect the scypho stomæ resemble those of Aurellia and Cotylorhiza according to Claus, and differ from the erect while the others extend outwardly. When the scyphostoma disk is about 2 mm . wide, conical enlargements which contain crystalline concretions are observed in the entoderm at the bases of the erect tentacles. An ectodermal ocellus develops upon the aboral (lower) side of each conical enlargement and the tentacle itself begins to degenerate, becoming finall absorbed, leaving only the sense-club with its ectodermal ocellus and terminal mass of ento dermal concretions. When the tentacles begin to degenerate, slight pulsating movements of the disk commence. The marginal lobes grow out while the rhopalia are being formed, and finally the interrhopalial tentacles are also absorbed.

Strobilization is monodiscus, but the scyphostoma after setting free the ephyra develop tentacles and gastric pouches, and may strobilate a second time
The young ephyra has It has 8 .
 and Cotylorhiza go through a similar stage. The septal vesicle on each arm. Rhizostoma disappear wholly in the ephyra, as do also the 4 interradial septa

Mayer, 1906, 1907, 1908, finds that the stimulus which produces pulsation in Cassiopea is nervous in nature and will pass over newly regenerated tissue which contains nervous, but no muscular elements. Mores can not respond to its presence by contraction

If an annulus, or strip of any shape constituting a closed circuit, be cut from the subbrella and stimulated momentarily at any one point, 2 waves of contraction start in opposite directions around the strip from this stimulated point. By pressing upon one side of the ring we dampen and reduce the strength of the initial wave passing over that side, and when the two waves meet the stronger wave overpowers and annuls the weak one. Thus a single contraction-wave is entrapped in the ring-circuit and travels constantly around it at a uniform rate. The mechanical arrangement of the pulsating medusa in nature is such as to prevent the formation of such continuous pulsation-waves-the pulsations are recurrent and each co

The sea-water is a balanced fluid for the medusa, neither stimulating nor inhibiting its pulsations. This balance is due to the fact that the ionic sodium of sea-water is a powerful nervous and muscular stimulant, but the magnesium, calcium, and potassium are mhibitors and annul the stimulus produced by the sodium. If calcium be absent the magnesium quickly checks all pulsation. On the other hand, a slight increase in the sodium secium, and potassium and produces contraction

The pulsation-stimulus is engendered in the marginal sense-organs. A uric oxalate of sodium is developed constantly in the entodermal cells of the outer end of each sense-club. This oxalate precipitates calcium, thus forming the crystalline concretions which consist of calcium uric oxalate, and at the same time it sets free such soluble stimulants as NaCl and $\mathrm{Na}_{2} \mathrm{SO}_{4}$: Thus we find that the sense-clubs are engaged in the maintenance of a slight concentration of sodium over and above that found in the sea-water itsel. This sight excess of
the sodium ion is a stimulant to the nervous elements within the sense-club and the neryous the sodium ion is a stimulant to the nervous elements within the sense-club and the nerv,
elements respond to it recurrently, producing the rhythmical contractions of the muscles.

Ifements respond to it recurrently, producing the rhythmical contractions of the muscles.
If a disk without marginal sense-organs be set into pulsation and then disturbed by sudden current in the sea-water, etc., it displays excitement by markedly increasing the amplitude of its pulsations. Hence its ability to display excitement is not dependent upon the sense-organs, but upon the general nervous tissues of the subumbrella.

When the marginal sense-organs regenerate, each one appears with a short, hernia-like side branch, which disappears later. In this connection it is interesting to see that the senseorgans are normally formed as side buds from the bases of each alternate tentacle of the scyphostoma, a display a tendency to replace the tentacle as well as the sense-club.

Insplay a tendency to replace the tentado as oll as the sense-cub.
In 1909 I succeeded in grafting two individuals of C. xamachana, side by side, so that their individual which initiated and controlled all of the rhythmical movements; but if one pinched the controlled medusa its rate increased and it then assumed a temporary control of the double animal. Hence the complex always pulsated at the rate of its fastest member. Hargitt attained a similar result with 2 individuals of Gonionemus murbachii, but in this case the rims were attached around nearly their entire edges so that any movement of one medusa must necessarily cause a corresponding movement of the other. In the two Cassiopeas, however, the contact was at a single narrow bridge of tissue only, and indeed the medusx pulsated indepe
regeneration.

- The color of the umbrella of C. xamachana is mainly due to the presence of numerous symbiotic algæ, Zooxanthelle, which Bigelow finds contain starch, cellulose, and chlorophyl. These plant cells are globular and occur in small clusters imbedded in the mesogloea and are greenish-brown in color

A well-marked, conical, pit-like depression is occasionally seen upon the aboral side of A well-marked, conical, pit-like depression is occasionally seen upon the aboral side of
each mouth-arm near its point of origin from the arm-disk, but more commonly in male than in female medusx. The female medusx greatly outnumber the males. Perkins believes that the medusæ may be hermaphroditic, but of this we have no evidence. Pseudorhiza haeckelii arms. Zeleny, 190 , finds that medusæ maintained in pulsation appear to regenerate at about the
me rate as if the disk were at rest. Certainly the functional activity of pulsation seems to be of no aid in accelerating regeneration, for Stockard also finds that the medusa regenerates at practically the same rate whether it be pulsating or at rest.

Stockard, r907, discovered that tissues removed from various parts of the subumbrella regenerate more rapidly the nearer they are to the disk-center, and less rapidly as the periphery is approached, thus according with the rule discovered by Morgan in the regenerating 's fin-the deeper the level of the cut the more rapid the regeneration
In 1go8, Stockard made the interesting discovery that if the medusx be starved while they regenerate lost arms the disk of the medusa shrinks during the process of regeneration, and its
rate of decrease is greater the greater the number of removed arms. The regenerating tissue rate of decrease is greater the greater the number of removed arms. The regenerating tissue
evidently possesses a greater capacity for absorbing nutriment than does the somatic tissue of the disk itself, and in this' respect the regenerating tissue behaves as does that of cancer which grows rapidly even when the normal tissues surrounding it are wasting away. (See Year Book of the Carnegie Institution of Washington, No. 7, p. I3I, 1908.)

Cassiopea frondosa Lamarck

Plate 69, figs. I to 3 ; plate 72 , the 3 upper figures.
Meduss frondosa, Pasias, 1774, Spicilegia Zoolog., fasc. . Io, pp. 29, 30, plate 2, figs. 1-3.-Gmeins, 1788, Linne's Syst. Naturre,

Disk flat, with rounded edge, and about 120 to 260 mm . in diameter. There is no concavity at the center of the exumbrella, such as is seen in Cassiopea xamachana. There are constantly I2 marginal sense-organs in C. frondosa, 4 perradial, 8 adradial, each of which contains a terminal entodermal mass of crystalline concretions. There are no ocelli. There
are 60 short, subrectangular, nearly straight-edged, marginal lappets, 5 between each sucare 60 short, subrectangular, nearly straight-edged, marginal lappets, 5 between each suc-
cessive pair of marginal sense-organs. The lappets flanking the sense-organs are only half cessive pair of marginal sense-organs. The lappets flanking the sense-organs are only half
as wide as the other lappets. The 4 pairs of mouth-arms arise from a shallow, flat, mouthas wide as the other lappets. The 4 pairs of mouth-arms arise from a shallow, flat, mouth-
arm-disk at the center of the subumbrella; this arm-disk is not quite as wide as the semi-arm-disk at the center of the subumbrella; this arm-disk is not quite as wide as
diameter of the medusa. The mouth-arms, which are about three-fourths as long as bell-radius, usually bifurcate at their free ends and give rise to short, pinnate side branches from their oral sides; but occasionally the branches are quite long as in Cassiopea xamachana. The numerous frilled mouths are found exclusively upon their lower sides, the upper sides of the
mouth-arms being smooth and without mouths. Scattered quite uniformly between the mouths are 30 to 40 small, expanded, flat, leaf-shaped vesicles. There are 4 small, round, interradial, subgenital pits, and 4 separate, invaginated genital sacs which project into the stomach-cavity. A duct extends from each of the 8 mouth-arms into the central stomach, and 24 radial-canals pass outward from the stomach into the subumbrella and are put into communication one with another by a network of anastomosing vessels. I2 radial-canals go to the marginal sense-organs. and I2 are intermediate in position.

General color of gelatinous substance amber-yellow, slightly olive, or greenish. Just above each of the 12 marginal sense-organs is usually a single, large, bilateral, bean-shaped
white spot in the gelatinous substance of the exumbrella. There is also a smaller white spot white spot in the gelatinous substance of the exumbrella. There is also a smaller white spot
in each marginal lappet, and above this an irregular line of 3 to 5 smaller white spots between each successive pair of marginal sense-organs. A more or less broken, axial, white line extends through the length of each mouth-arm in the gelatinous substance. The frilled mouths are of a cinnamon color and the. leaf-like vesicles are opaque, dull white. The spots upon the bell are very variable in number and arrangement (see plates 69 and 72).

Cassiopea frondosa is found throughout the West Indian region and the Florida Reefs. Perkins observes that it lives upon sandy rather than weedy bottoms. In common with other species of the genus it lies upon the bottom with the oral surface and mouth-arms uppermost.
In this position it remains for long intervals of time, slowly contracting its disk in a sluggish In this position it remains for long intervals of time, slowly contracting its disk in a sluggish
rhythm. This movement serves not only to maintain the disk upon the bottom, but to create "a water-current over the mouth-arms. It prefers purer water than C. xamachana, and is usually a water-current over the mouth-arms. It prefers purer water than C. xamachana, and is us
found in protected places among the mangroves in the cuts between the Florida Keys.

In Kingston Harbor, Jamaica, this medusa is found upon the muddy bottoms of protected lagoons, especially in those surrounded by mangroves, near the harbor entrance where the wxater is quite pure. In Jamaica it attains to a far greater size than in Florida. A specimen which I found in a mangrove lagoon near Port Royal in March, 1gog, was of the following dimensions in mm.: Bell 259 wide, arm-disk 95 wide, mouth-arms I I29 long, pinnately and complexly branched, and projecting beyond the rim of the bell. Color as in the Florid specimens. I am told that the medusa becomes even larger in Jamaica.
L. Agassiz (rhich p. 147) showed that the
mouth-opening which disapears in the adult.
C. frondosa can at once be distinguished from C. xamachana by its amber color, the absence of ocelli on its rhopalia, the absence of a sucker-like concavity upon its exumbrella, and by the fact that it has constantly 12 marginal sense-organs, whereas C. xamachana has II to 23 (see plate 69). It is far less hardy in aquaria than C. xamachana. disk while at the same time the oral vesicles increase in number until they are closely crowded together and completely cover it. The eggs are discharged from the ovaries into the stomach, where cleavage begins; they then pass out on to the oral disk and are to be found there in large numbers, cemented together in small, reticulated clusters at the bases of the vesicles; they remain there until some time after they have become ciliated planulx. Bigelow reared the scyphostomæ of this species to the 8 -tentacle stage. The young scyphostoma appears to be ntirely similar to those of other species of Cassiopea.

Dr. R. P. Bigelow has shown that while the vesicles on the oral surface of the disk serve to protect the young, those of the mouth-arms serve to capture food. These vesicles usually coperod they bend down and asualy mouth of the nearest funnel in the manner of a lid. The prey thus finds itself within one of the mouths, tightly shut in by the overlying vesicle.

Cassiopea ornata Haeckel.

Bell 100 to 120 mm . wide, 30 to 40 mm . high, flat and shield-shaped. 16 rhopalia, 80 lappets, 96 white spots, as in C. andromeda. Mouth-arms cylindrical, slender, and somewhat onger than bell-radius, not broad and flat as in the typical C. andromeda. There are only small, club-shaped vesicles between the mouths. The characteristic feature of this species is said to be the presence of 2 distinct ring-canals. The inner ring-canal connects the 16 principal radial-canals at an annulus some distance inward from the margin, while the outer ringand soon lose themselves in the network of anastomosing vessels of the subumbrella, whereas the 16 rhopalar canals extend straight out to the sense-organs. The network of vessels becomes fine-meshed on the inner side of the ring-canal, but on its outer side it gives off a wide-meshed network, the meshes of which become finer as they near the bell-margin, where there is a marginal ring-canal. These hypothetical ring-canals are so peculiar and unlike the simple network seen in other species of Cassiopea that the fact of their existence requires confirmation. Haeckel alone has observed them. The medusa is from the Pelew Islands and New Guinea.
I find among the collections of the U. S. Fisheries Bureau steamer Albatross seven specimens of a medusa which appears to be a closely related variety of, if not identical with, C. to doubt their existence in Haeckel's medusa. The dimensions in mm ofkel, and this leads me medusæ are as follows: Bell 76 wide; exumbrella flat, smooth and without an aboral suckercavity; arm-disk 39 wide; mouth-arms 3 l long, stout and flattened laterally, with 9 to 12 short, stout, blunt, dentritically arranged side branches. A few very small, flat, club-like appendages less than I mm. long scattered among the mouths of the mouth-arms; but these become larger near the arm-disk. The arm-disk itself is thickly covered with irregularly shaped tuber-like, or ruffle-shaped, appendages, the largest being 3 to 4 mm . long. There are 16 rhopalia. 5×16 blunt, square-edged, marginal lappets. 32 tree-like radial-canals which give off an anastomosing network, but no distinctly differentiated ring-canal. These medusx were obtained in the following localities in the Philippine Islands in 1908: 3 large specimens from near
 seine, and I from Catbalogan, Samar, on April I6.

Cassiopea ornata var. digitata Maas

Cassiopea ornata var. digiztata, MaAs, ro93, Scyphomedusen der Siboga Expedition, Monog. ir, pp. 40, 45, taf. 4, fign. 26,30 .
Bell about 100 mm . wide, very flat, without an aboral concavity or a dome. 16 marginal sense-organs, 32 rhopalar and 3×16, or more, velar lappets which are, however, quite irregularly
arranged. 16 long, violet-colored, radial stripes upon the subumbrella. The mouth-arms branch in a hand-shaped manner, the terminal branches resembling fingers in shape. Thes mouth-arms are 1.5 times as long as the disk-radius. There are no large club-shaped appen dages between the mouths, all being very small. The mouths are brown to violet.
ed mouth-arms. It is found among the islands of the Malay Archipelago, at Saleyer, and elsewhere.

Cassiopea depressa Haeckel

Bell flat, shield-shaped, 100 to 120 mm . wide, 15 to 20 mm . high. Exumbrella smooth without aboral concavity or dome. I6 rhopalia, I44 wide, pointed, but not prominent lappets. In each paramere 7 velar between 2 ocular lappets. 8 very wide, flat mouth-arms shorte than the bell-radius and with 6 to 8 short, wide-spreading main-branches. Numerous very small club-shaped vesicles between the mouths, hardly larger than the rhopalia, only 0.4 to 0.8 mm . long. No radial spots ond

Islands off Mosambique, East Africa

Cassiopea depressa var. picta Vanhö̈fen

Disk flat, 60 to 85 mm . wide. 14 (?) to 16 marginal sense-organs. II2 (7×16) vela and 32 ocular lappets, all similar each to each, and blunt and small. The lappets are irreguarly developed in the two specimens described by Vanhoffen, and while there are usuall 5 velar lappets between each successive pair of ocular lappets, in some parameres there are $0,3,8$, or even 10 velar lappets. Arm-disk octagonal with 8 equal sides and half as wide as bell-diameter. The free, projecting parts of the 8 mouth-arms are somewhat shorter than
the radius of the disk and project about one-third of their length beyond the bell-margin These mouth-arms are pinnately branched with short branches as in C xamachana, and have no appendages excepting small lancet-shaped ones, as in C. ndrosia and C. depressa. The musculature is similar to that of C. ornata. The 32 radial-canals give off anastomosing side branches which place them all in connection one with another. There are no distinctly differentiated ring-canals

Ground color of disk translucent opal. There are 16 large white spots over the 16 margina sense-organs, and in the large medusa these are fused into a ring of varying width, bein widest in the radii of the sense-organs and narrowest in intermediate positions. Peripheral to this white ring are 144 white, linear-oval streaks, one over each lappet; those over the 32 over the ocular lappets are fused with the 16 large, white, radial spots. I 6 white rays in the subumbrella appear as large egg-shaped spots, their blunt ends inwards. They are in the radii of the sense-organs and extend from the outer edges of the central stomach and gonads outwards with their radial edges almost touching.

This species was described by Vanhöffen from two specimens found near Beibul in the Red Sea, in December, i884. It differs from other species of Cassiopea in the large number of its marginal lappets and its very wide arm-disk. There is no raised central sucker on th exumbrella and no large club-shaped vesicles on the mouth-arms, such as are seen in C polypoides.

Cassiopea mertensii Brandt.

Cassiopea mertensii, BRaxpr, r838, Mém. Acad. Sci. St. Petersbourg., Sci. Nat., ser. 6, tome 4, P. 396, taf. 20-23.-Harcxrx,

Bell evenly rounded without an aboral concavity, 100 to 120 mm . wide, 30 to 40 mm . high. I6 rhopalia. I28 small, tongue-shaped, prominently projecting lappets. In each paramere 6 velar between 2 ocular lappets. 8 cylindrical mouth-arms 1.5 times as long a
bell-radius give off 8 to 12 main branches each, which also branch in a tree-like manner. merous large club-shaped vesicles between the mouths, some half as long as bell-radius.
Bell yellowish, rusty-brown, lighter in the center. Radial streaks reddish-brown. There Bell yellowish, rusty-brown, lighter in the center. Radial streaks reddish-brown. There
2 white, half-moon-shaped spots over each rhopalium. Upper surfaces of mouth-arms are 2 white, half-moon-shaped spots over each rhopalium. Upper surfaces of mouth-arms light-yellow. Mouths dark rusty-yellow. Vesicles white

Found at Ualan, Caroline Islands, tropical Pacific

Cassiopea ndrosia Agassiz and Mayer.

Cassiopea ndrosia, Acasssz And Marre, I899, Bull. Museum Comp. Zool. at Harvard College, vol. 32, p. 175, plate 14 , figs Cassiopea 4 at
Cassiofecia me ${ }^{3}{ }^{46}$ mertensii var. ndrosia, MaAs, r903, Scyphomedusen der Siboga Expec., Monog. If, pp. 40, 43 .
Bell 50 mm . in diameter with a shallow concavity at the center of the exumbrella, similar to that of C. xamachana. Rhopalia variable in number, 18 to 22. Marginal lappets very indistinct but there are 2 velar flanked by 2 ocular lappets in each paramere. Mouth-arm
cylindrical, I. 5 times as long as bell-radius, and branched in a tree-like manner. Each arm cylindrical, I. 5 times as long as bell-radius, and branched in a trae--1ike manner. Each arm
gives off 6 to 12 main side branches. There are numerous small, flatened, expanded leafshaped vesicles between the mouths, most numerous at center of arm-disk. No ribbonshaped flaments. 4 small, round, subgenital ostia. 4 separate genital sacs.
General color of bell grayish-brown, with bluish, inter-rhopalar, radiating streaks and white radiations in the subumbrella in the rhopalar radii. A large, spearhead-shaped white spot with its pointed end outward is found near the margin of the exumbrella above each sense-organ; there are also 4 small, radially elongated, white spots near the margin in each arms are grayish-white, the mouths deep brown, and the vesicles olive-green.
Found upon muddy bottoms in Suva Harbor and at Komo Island, Fiji Islands, South Pacific, in November
C. ndrosia lacks the large vesicles of C. mertensii and has an aboral exumbrella concavity whereas the bell of C. mertensil 1s, apparently, evenly rounded. It is most closely related to C. xamachana of the West Indies, and resembles one of its color varieties, but lacks the ribbonlike filaments of C. xamachana.

RHIZOSTOMATA DICHOTOMA Vanhöffen 1888

 wissen. Zoopl., Bd.47, p. III.
Redionyaria, MAAs, 1909, Scyphomedusen der Siboga Exped., Monog. II, p. 89; 1907, Ergeb. und Fort. Zool., Bd. I, p. 20 .

characters of the group.

8 separate mouth-arms the lower ends of each one of which gives rise to 2 expanded leaf-like side-walls, or lateral membranes, the outer edges of which give rise to secondary branches and bear the frilled mouths. Thus each arm is V-shaped in cross-section (fig. 404)

Frc. 404.- Diagrimmatic representation of the shape and position of the mouth-arms in the Rhizostomata dichtoroma. The figure on the right hand shows
moth-mams. The midde figure is an oral view of the bell.

There are no scapulets upon the mouth-arms. The radial-muscles are powerfully and the There are no scapulets upon the mouth-arms. The radial-muscles are

Pof the bell all similar each to each. .

Genus CEPHEA Peron and Lesueur, 1800

 Tiefse Exped. Validivia, Bd. 3, Iffy. If P. P5.

The oldest known species is "Medusa octostyla" of Forskål, and this may serve as the ype of the genus Cephea
generic characters
Rhizostomata dichotoma in which the 8 mouth-arms fork once dichotomously and each fork gives rise to short dichotomous or dendritic branches. Solid, wart-shaped tubercles a the center of the exumbrella. The central stomach gives rise to 8 rhopalar and numerous inter-rhopalar radial-canals, all of which connect with a network of anastomosing vessels in There is no definite ring-canal. Development unknown.
,
The described species of Cephea are all found in the tiopical Indian Ocean and Pacific region. Cephea cephea (Medusa cephea, Forskål) is apparently widely distributed over the Indo-Pacific region and is distinguished by its numerous, long, tapering, conical, pointed filaments; its deep rhopalar clefts in the bell-margin; oval velar lappets fused one to another yy a thin web, and iss brown coloration. C. octosty a of the Red Sea-Malay Archipelagoappets are indistinct. Also in C. conifera, C. dumokuroa, and C. carulea the lappets are so indistinct that the bell-margin is entire, save for the deep niches of the 8 rhopalia. In C.dumokuroa and C. corulescens the central dome bears warts only on its sides, leaving its apex bare. C. cerulea has only 16 long filaments, whereas C. conifera has more than 100 and C. dumokuroa none. In Cephea carulescens we find very small tubular and somewhat large spindleshaped filaments between the mouths, and the subgenital porticus is only partially differentiated. In some quadrants the primitive genital sacs may have fused and the fused wall broken down to form an opening, so that one may pass a probe into one subgenital ostia and out through another without penetrating any tissue, the passage being continuous and actually from another or merely fused without any break in the area of fusion. In C. conifera and C. dumokuroa, on the other hand, the subgenital porticus is unitary and cruciform, whereas in C. setouchiana the 4 genital sacs are fused along their inner walls, but the walls remain unbroken. In Cephea typhlodendrium the filaments are small and spindle-shaped, and confined to the arm-disk.

It is evident that we have in the Red Sea, Indian Ocean, and western parts of the tropical Pacific a large number of closely related forms of Cephea displaying many local variations. think there are only 2 well-marked forms and these are but the extremes of an intergrading eries. C. octostyla gh dome and large warts
L. S. Schultz, 1898 , proposes a genus N etrostoma to include Rhizostoma dichotoma with ments between the mouths on the mouth-arms, although filaments may be found on the mouth-arm-disk.

As a matter of fact the mouth-arms of all known species of Cephea give rise to secondary dichotomous, or dendritic, branches, and all are laterally compressed. Moreover, we can not separate genera merely upon the relative size of the mouth-arm-filaments, for confusion is certain to result.
"Microstylus" of Kishinouye is evidently a Cephea closely allied to C. typhlodendrium.
I have therefore broadened the definition of the genus Cephea to include all Rhizostomata dichotoma with a wart-bearing central area upon the exumbrella and with 8 forked moutharms, the forms of which are themselves still further branched.

In the collection of Cepheas made by the U. S. Fish Commission steamer Albatross in 1908, I find an intergrading series among specimens of Cephea collected all at the same time on the ing quite flat, and in others there is a low but well defined dome. In some the exumbrella
bein being quite flat, and in others there is a low but well defined dome. In some the exumbrella
warts are large and mammiform, while in others they are mere granules, often absent over wide areas or leaving the center smooth. The filaments upon the mouth-arms and arm-disk may be absent or long and filiform. Thus among these intergrading individuals (evidently all of one and the same species) some are identical with Forskal's "Medusa octostyla," others are similar to Schultze's "Halipetasus scaber."

Cephea octostyla L. Agassiz.

Cephea cyclophora, Mrssv-EDwafps, I 849 , Cuvier's Regne animaz illustre Zooph, planche 5 Ir, fig 4.

According to Haeckel and Forskial the bell is 300 mm . wide, Hlatter than a hemisphere. Surface of exumbrella smooth, without a central dome, and without radiating furrows. 8 rhopalia 50 to 60 (?) wide, flatly-rounded, marginal lappets. Rhopalar clefts shallow. Arm disk wider than bell-radius. 4 small subgenital ostia. 8 bifurcated mouth-arms I. 25 times
as long as bell-radius; the forks of each arm as long as undivided upper part of arm. as long as bell-radius; the forks of each arm as long as undivided upper part of arm. 9 long,
stout filaments of uniform caliber arise apparently from the arm-disk. These are .5 times as long as diameter of bell and end simply, without terminal knobs. In addition to these filaments there are about I2 short, stout, swollen, club-shaped appendages between the mouths on the lower sides of the arms. The color is blue and hyaline. Arabian coast of the Red Sea.

Forskål's description evidently refers to the medusa figured on his plate 29, not that of plate 30 as stated by Niebuhr, who edited the plates of his work in 1776. While Forskå! figure is remarkably good for its period, his description is too brief and vague to be of value. The description given above has therefore been mainly derived from a study of his figure. Haeckel's "Stylorhiza polystyla" from Singapore is described from a preserved and
amaged specimen. It is said to be 100 mm . wide with flatly rounded bell and 80 marginal damaged specimen. It is said to be 100 mm . Wide with flatly rounded bell and 80 marginal
lappets. In each octant are 8 rectangular velar and 2 small oval ocular lappets. 4 subgenital ostia hardly as wide as the columns between them. Mouth-arms nearly twice as long as bell radius; many times dichotomously branched, with 16 very long tubular appendages and numerous vesicles upon long pedicels. 8 of the long appendages arise from the bases of the arms and 8 from the crotches of the primary forks. This is probably identical with Forskall's medusa.

Many well-preserved specimens of Cephea octostyla were obtained by the U. S. Fisheries Bureau steamer Albatross at Jolo Anchorage, Philippine Islands, tropical Pacific, in February
and March, and March, 1908.

The bell of the large specimens is 90 mm . wide, exumbrella flat; rim vertical, 20 mm . high Neither central dome nor coronal furrow, but there is a zone of numerous, low, wart-like 40 mm . in diameter and exumbrella, leaving the center. free. This wart-covered zone is about of warts at the center of the exumbrella. Other parts of the exumbrella are smooth. There are 8 rhopalia set within fairly deep niches. These lack ocelli and have no exumbrella sensory pits. There are about 72 indistinct lappets, 7 velar and 2 ocular lappets in each octant. These
appets are similar each to each and are rectangular in outine, being separated by very sligh indentations which are spanned by a web. Fairly deep grooves extend up the vertical rim of the exumbrella surface of the bell, between the lappets.

The arm-disk is as wide as the bell-radius and is 18 mm . thick. The free parts, upper, of the 8 bifurcated mouth-arms are each about 20 mm . long. At the center of the arm-disk we find 4 to 12 or more tapering, somewhat flattened, wart-covered filaments which are about 25 mm . long and terminate each in a simple, pointed end. There are also numerous shorte filaments, ranging from about 15 to 5 mm . in length, all near the center of the anm-d many still shore
subumbrella are entire, but are very weakly developed. The central stomach gives ris to 8 large rhopalar and about $56(7 \times 8)$ somewhat narrower radial-canals, all connected one with another by a network of anastomosing vessels. The rhopalar canals proceed straight through this network, giving off small side branches to the adjacent radial-canals, but the interrhopalar canals tend to lose their identity in the network. There is no distinctly differentiated ring-canal. There is a unitary, cruciform, genital cavity opening to the outer world by the 4 genital ostia. There are many fairly large, reddish-brown dots over the outer surface of

Fig. 405.- Cephea octorsyla. Drawn by the autbor, from specimens talacen by the Albatrooss at Jolo Anchor-
A, B, and C , side riews of exumbrella, showing variations in development of warts; D , rhopalium seen
A, B, and C, sude viesse of esu.
is faded in formalin, but a color note states that the exumbrella bore numerous small, round ocherous spots. When the bell is 15 mm . wide there are a few, small, scattered warts near the center of the exumbrella. There are 8 rhopalia set within shallow niches. The bell-margin between the sense-clubs is entire and there are no lappets. There are 8 quite wide rhopala and 8×3 somewhat narrower inter-rhopalar canals, all set into communication by side branches forming a marginal network. The 4 genital cavities are separate. The 8 bifurcated mouth arms lack appendages either upon the arm-disk or etween the faught upon the surface under an electric light in Jolo Anchorage, Philippin Islands, on February I3, 1908.

Cephea octostyla var. cerrulescens Maa

The bell becomes at least 200 mm . wide. There are 8 marginal sense-clubs, each with a terminal entodermal concretion-mass and without an exumbrella sensory pit. No ocelli(?) In other respects the bell resembles that of Cephea octostyla having a central dome which bear about 10 wart-like projections. There are 6 to 8 round-edged, marginal lappets in each octant. The 8 mouth-arms are short, massive, laterally compressed, and curved outwards.

Each mouth-arm bifurcates at its outer end and also gives rise to numerous very short, lateral branches upon its lower side. These side branches themselves branch somewhat dichoto mously, giving a complex system of mouth-bearing ramuli upon the lower side of the mouth arm. There are two sorts of appendages between the mouths: small, thin, tubular appendages with prominent nettling-warts and larger, spindle-shaped appendages. These are, however,

an nematophora" $=$ Cephea cephea; a
Journal College of Science Tokyo the size of the branches of the arms themselves.

In young medusx there are 4 separate, subgenital cavities with 4 small, external ostia in the inter radial sides of the arm-disk. In variable condition, the different quadrants of the same medusa being unlike; but it seems that a completely separated, subgenital porticus, such as that found in Crambessa or Cotylorhiza, is never formed in Cephea carulescens. The canal-system of the umbrella consists of 8 radial-canals in the rgans and 2 marginal sense which give rise to numerous side branches, forming a network of canals which place all 32 vessels in communication one with another. There is no distinctly differentiated, annular ring-canal. The muscular system of the subumbrella resembles Cotylorhiza in the form of the radial-muscle les are, however, very poorly developed.

The general color appears to be blue. A narrow zigzag band of fiery red, around the outer side of the arm-disk, lies above the subgenital ostia and bends downward (outward) at each interradius toward the subgenital ostium.
Clusters of small, brown, oval spots are found near the side of each subgenital ostium.
This medusa is found in the Malay Archipelago and Maldive Islands, Indian Ocean. The reddish dots found in the typical C. octostyla around the sides of the arm-disk have, in his variety, fused into a solid band of color.

Cephea cephea

Forskål gives a good, clear drawing of this medusa, which bears so close a resemblance to the figures of "Perirhiza nematophora" of Kishinouye that I am convinced the two are itentical. The medusa is distinguished by the very deep rhopalar clefts in the belw this M its long tapering mouth-arm-filaments, and brown color. Gmelin erred in calling this M.
octostyla, when he quoted from Forskăl, for the latter's Medusa octostyla is very different.

Bell roo to 140 mm . in diameter. A large dome at apex of exumbrella, nearly as wide as bell-radius and covered completely with about 30 large, conical, pointed warts, many of which are bent near their pointed ends. The dome is surrounded by a wide, shallow ring furrow, which separates it from the nearly equally wide, flexible marginal zone of the bell. The 8 sense-organs are set within deep niches in the bell-margin, as is well shown in Forskal's figure. There are 80 to 90 marginal lappets; in each octant 8 or 9 large, oval, velar between margin appears to be nearly entire. The small ocular lappets are deeply set inward centripetal to the margin.

On the subumbrella a radiating inner zone of folded ridges contains the radial muscles, and near the bell-margin is an unbroken zone of circular muscles. Arm-disk octagonal, nearly as wide as bell-radius. The 4 subgenital ostia are very small, compressed clefts. There is a unitary, cruciform, subgenital cavity. The arm-disk has no canal-system of its own, and there are no mouths upon its central parts. The 8 laterally compressed, stout, adradial mouth-arms are somewhat shorter than the bell-radius. Their upper halves are nearly coalesced where they arise from the arm-disk, but below they fork and each main branch ventral sides of these mouth-arms and their branches. There are more than foo long, tapering, hollow filaments with pointed ends. The largest of these arise from the arm-disk at the points of origin of the 8 mouth-arms, and they are as long as the diameter of the umbrella and hollow. Forskål figures 16 such filaments all apparently arising from the arm-disk and numerous smaller ones arising from between the mouth-frills on the arms, very much as does Kishinouye 127 years later

The nearly circular, central stomach gives rise to 8 ocular and about 40 to 48 interocular radial-canals. The ocular canals are not wider than the others, but they extend straight out to the rhopalia, giving off numerous side branches into the network-zone of the bell; whereas a broad zone extending from near the outer edge of the stomach-cavity to the bell-margin. There is no differentiated ring-canal. The network gives off many blindly-ending branches which extend downward into the radiating muscular ridges of the subumbrella

The margins of the velar lobes are brown, but Kishinouye finds that other parts are colorless, although Forskăl's medusa displayed some reddish-brown on its bell. Forskå describes this medusa from the Red Sea, and Kishinouye from Misaki, Japan, where it is found in winter. Péron and Lesueur's C. fusca, from Malabar and northwestern Australia, is probably the same medusa; as is also Diplopilus couthouyi Agassiz, 1862 (Cont. Nat. Hist. U. S., vol. 4, p. 158), from Hawaii. The medusa appears to be widely distributed over the no-facific region. Ahaeckels cop the bell-margin to be practically entire, as in C.ccrulea. The decided resemblance, in other espects, between Haeckel's C. conifera and Forskål's medusa will appear in the following description.
"Cephea cephea var. conifera" Haeckel.

This is probably identical with Cephea cephea
Bell too to 120 mm . wide, 30 to 40 mm . high. A thick-walled, flatly rounded, central dome upon the exumbrella bears 20 to 30 large and numerous small protuberances and is separated from the marginal zone of the exumbrella by a deep annular furrow. These solid, wart-like protuberances of the central dome are scattered irregularly over its entire surface,
as in C. carulea, not arranged in 2 rows, as in C. dumokuroa. 8 rhopalia are set within deep niches. 80 indistinctly developed, marginal lappets. In each octant 8 wide, flat, velar lappets,
flanked by 2 very small, rhopalar lappets. The lappets are so poorly developed that the bellmargin is practically entire and without notches, in this respect resembling C. ccerulea. The octangular arm-disk is about'as wide as the bell-radius, and the 4 subgenital ostia on its interradial sides are very short, narrow clefts.

The 8 mouth-arms arise in 4 pairs from the perradial angles of the central part of the arm-disk, but separate widely, one from another, so as to project from the 8 adradial corners of the sides of the disk. The 8 mouth-arms are each about as long as the bell-radius and sides of the mouth-arms and these bear the mouths. A single long, stout flament arises from each of the 4 perradial corners of the ventral side of the arm-disk at the points of bifurcation of the 4 primary mouth-arm canals. In this respect the medusa differs from C. ccerulea, wherein there are 4 filaments in each perradius of the arm-disk. There are also more than 100 long, slender filaments between the mouths. These filaments are longer than the belldiameter. In the closely allied C : ccerulea the mouth-arm filaments are very short and inconspicuous. The radial-muscles of the subumbrella are well-developed and form radiating,

lamella-like ridges as in C.ccerulea. There are numerous, fine, anastomosing radial-canals and a wide gin. Color (?) n. Color (?)

Found at the Caroline and This description is presented to show that there are no appreciable differences between this medusa and Forskål's Medusa cephea.
Cephea cephea var. dumokkuroa Agassiz
and Mayer.
and Mayer.
 College, vol. $32, \mathrm{p} . \mathrm{T72}$, plates 11, In

Bell 300 mm . wide, flat, and disk-shaped with sides vertical near the margin. Alarge proml The apex of this dome is smooth and without the wart-like protuberances seen in C. ccrulea and C. conifera; instead of which the protuberances of C. dumokuroa are arranged in two verticels, confined to the sides of the dome. The upper row of protuberances consists of about 8 large, solid, wart-like, bluntly-pointed projections, and below them is a zone of about 12 smaller warts not more than half as large as those of the upper row. There is a wide, shallow furrow around the dome. 8 rhopalia are deeply sunken within marginal niches. Each senseorgan contains a terminal mass of white, entodermal concretions. There is no ocellus and The marginal lappets
The marginal lappets are so shallow that one can barely distinguish them, but there are 8 scarcely perceptible, velar lappets in each octant, as in C. cerulea and C. conifera. The arm-
disk is about as wide as the bell-radius and there are 4 very small, round, subgenital ostia, with a unitary subgenital porticus. 8 short, bifurcated mouth-arms, each about as long as bellradius; their free outer ends curve upward and the mouths are confined to the ventral sides of the arms, the frilled mouths being placed upon short branches which arise from the lower side of each arm. There are neither filaments nor club-shaped appendages, and in this respect the medusa differs from C. ccrulea and C. conifera. The central stomach is a wide cruciform space above the subgenital porticus. 3^{2} radial-canals arise from its margin and diverge into the sub
umbrella. 8 of these canalls lead to the rhopalia and 3 are in each inter-rhopalar octant, instead of 7 as in C. ccrulea. There is a wide zone of anastomosing vessels near the margin. The central stom
mouth-arms.
General color of medusa blue, as in C. carulea. The bare apex of the central dome is streaked longitudinally with blue, and a deep blue entodermal band of color extends around the sides of the arm-disk above the subgenital ostia. This blue band is especially wide in the adradii above the bases of the 8 mouth-arms. The unbranched portions of the radial-
canals adjacent to the stomach and the canals of the arm-disk and arms are blue. The canals adjacent to the stomach and the canals of the arm-disk and arms are blue. The frilled mouths are of a deeper hue of the same color
A large swarm of these meduse was found upon the surface off Vanua M.balavu Island, Fiji Islands, on November 25, 1897.

Cephea cephea var. corrulea Vanhöffer.

Cephea corrulea, Vanhörfin, 1902, Wissen. Ergeb. deutsch. Tiefsee Exped. Valdivia, Bd. 3 Lfg. I, P. T5. taf. 4, fign. I3, 14. Bell 57 mm . wide. A dome-like apex 14 mm . wide at the center of the exumbrella is surrounded by an annular furrow 9 mm . wide. The dome itself bears 6 large and about 30 mall, rounded, wart-like protuberances, the largest of which are 2.4 to 5 mm . wide; numerous fine punctations between the warts. There are 8 rhopalia. No margmal lappets, but 8 radia are very small. The dichotomous mouth-arms are each 16 mm . long and bear frilled mouth are very small. The dichotomous mouth-arms are each 16 mm . long and bear frilled mouths
on their ventral sides. There are 4 long filaments at the point of bifurcation of each of the on their ventral sides. There are 4 long filaments at the point of bifurcation of each of the
4 primary arm-canals, 16 in all; of these, the second and third are 2 to 3 times longer and much stouter than the first and fourth. Numerous very small filaments are among the mouths, The central stomach gives rise to 64 radial-canals, which break up into a wide, anastomosing canals in each octant thus differing from C. dumokuroa, wherein there are only 3 radial-canals in each inter-rhopalar sector. There is a broad, marginal annulus of ring-muscles in the subumbrella, and centripetal to this is a wide zone of radial-muscles extending from the supports of the arm-disk to the zone of ring-muscles.

The disk, arms, and filaments are blue and the frilled-mouths are chocolate-brown
Found at Dar es Salaam, east coast of Africa (see fig. 408).

Cephea cephea var. setouchiana

Disk 100 to 200 mm . wide with a prominent central dome nearly as wide as bell-radius and covered completely by 50 or more solid, pointed, wart-like projections of various sizes. flexible, outer zone of the exumbrella. 8 rhopalia. 6 to 8 flatly rounded, velar lappets flanked by 2 smaller, rounded, rhopalar lappets in each octant. 50 to 60 lappets, in all, upon the bellmargin. The 8 mouth-arms curve outwardly and upwardly in their lower halves. They are a little longer than the bell-radius and each one is forked, each of the main forks being nearly as long as the upper, undivided part of the arm. The forks give rise in turn to numerous pinnate branchlets. There are numerous small, short appendages among the frilled mouths and those on the arm-disk at the ends of the perradial oral suture are longer, triangular in narrower than the spaces between them. The subsenital cavity is unitary and 4 -lobed narrower than the spaces between them. The subgenital cavity is unitary and 4-obed, as

The central stomach gives rise to 8 large rhopalar and 24 inter-rhopalar radial-canals all of which extend straight outward to the bell-margin. All of the canals give off side branche which form a wide, anastomosing network of vessels, the meshes of which are mainly polyg onal near the center, but rectangular near margin of disk. 8 canals arise from the stomac at depressed areas near the sides of the perradial septa of the subgenital cavity. These canals
extend downward into the 8 mouth-arms and each give off a horizontal branch which extends into the center of the arm-disk where they unite in a single short duct.

Each wart of the central dome is pigmented with lines of numerous, minute, brown dots converging toward the pointed apex of the wart. There are also brown dots on the sides of he arm-disk. The oral frills are brown and the gonads pinkish.

Found in August and September in the Inland Sea, and at Misaki and Senzaki, Japan. A shrimp is commensal with the medusa, hence its popular Japanese name "Yebikuragé" (shrimp medusa)

Cephea typhlodendrium.

Bell fatly rounded, ino mm. wide. The center of the exumbrella is occupied by a low dome completely covered with about 80 rounded warts of various sizes. There is no ring-
furrow around the dome. The outer parts of the exumbrella are smooth. 8 marginal sensefurrow around the dome. The outer parts of the exumbrella are smooth. 8 marginal sense-
organs. 80 marginal lappets composed of 64 rounded or cleft, velar lappets and 16 narrow sharp-pointed ocular lappets. The 8 mouth-arms arise from a thick arm-disk. The moutharms branch dichotomously and are laterally compressed. Small, spindle-shaped, sharppointed filaments are found only on the arm-disk. There are 4 very small, round, subgenital

408.

ostia and a unitary, subgenital porticus. The stomach gives rise to 32 radial-canals: 8 ocular, 24 interocular. The interocular canals give rise, distally, to blindly-ending side branches, peripherally to anastomosing branches; but the 8 ocular canals give off only the peripheral, anastomosing vessels. These ocular canals are wider than the interocular and extend straight hrough the marginal network to the 8 rhopalia, whereas the interocular vessels become lost in the peripheral network. There is no definite ring-canal

This may be a well-defined species, for it appears to be distinguished from other members of the genus by its small, sharp-pointed, ocular lappets.

Genus COTylorhtiza L. Agassiz, 8862.

The type species is the well-known Cotylorhiza tuberculata (Medusa tuberculata Macri) of the Mediterranean.

generic characters.

Rhizostomata dichotoma with 8 simple, bifurcated mouth-arms, the terminal branches of which branch pinnately. The 4 subgenital ostia are simple and funnel-shaped, and there
is a single subgenital porticus. The appendages upon the mouth-arms are mounted upon pedunculated filaments. There are 8 marginal sense-organs and numerous radial-canals have no ocelli and no exumbrella sensory pit. There is a unitary peripheral zone of circular muscles and an inner zone of radial-muscles in the subumbrella. The exumbrella is smooth and without an aboral "sucker-like" depression, but with a prominent central dome without wart-shaped elevations upon it.

This genus is sharply separated from Cassiopea, with which it has often been confused, by its single, unitary, subgenital porticus, its relatively simple bifurcated mouth-arms, and by having constantly 8 instead of an indefinite number of marginal sense-organs. Also there is no aboral "sucker" upon the exumbrella, such as is commonly seen in Cassiopea.

Cotylorhiza tuberculata L. Agassiz.
Plate 73, fig. 2.
Medusa tuberculata, Macrx, G., I778, Osscrvazioni Int. Polmone Marino, P. 20.—LinNé, (Gmelin), 1788 , Systema Nature,

Bell 1
Bell usually not more than 150 to 170 mm . in diameter, though according to Will it may become 300 mm . wide. The dimensions of a large medusa found at Naples on December 28, 1907, were as follows: Beil 168 mm . wide, arm-disk 88 mm . wide, each mouth-arm 46 mm .
long and 54 mm . thick (dorso-ventrally). The gelatinous substance is very rigid. The exumbrella surface is smooth and without wart-like projections.

The center of the exumbrella is occupied by a smooth, elevated dome, somewhat flatter than a hemisphere and about as wide as radius of disk. Around the outer edge of this dome is a depressed region forming a gutter-like ring, somewhat lower than the parts of the bell nearer the margin. There are 8 marginal sense-organs, which lack an exumbrella sensory pit and have no ocelli. The sense-club has a very large, bag-

The marginal sense-oroans are flanked by t 6 short blu
typically io velar lappets in each octant, the middle 6 of whil rhopalar lappets. There always, cleft. The outer edges of these lappets are subrectangular with bluntly-rounded angles. The primary clefts between the lappets are fully twice as long as the secondary clefts of the 6 middle lappets; but all the clefts are bridged over by a web of subumbrella tissue, so that they are not complete cuts, but mere grooves upon the exumbrella. The i6 velar
lappets adjacent to the 16 rhopalar lappets are fully twice as wide as the others and are rarely cleft. The actual number of marginal lappets is quite variable, but we may say that there are typically 96 primary lappets, of which 48 are typically cleft. Counting these clefts we would then have 18 lappets per octant or 144 in all. The bell-margin usually bends at right angle to the general surface of the exumbrella; subumbrella surface convex.
Arm-disk octangular with re-entrant angles and sharply set off from subumbrella. It disk was 88 mm . wide. 4 simple, small, oval, subgenital ostia on interradial sides of arm-disk are not much wider than the width of a marginal lappet. The 8 adradial mouth-arms are bluntly simitar-shaped in general outline, are laterally compressed, and only about half as

aro.-Cotylorhiza tuberculuata, from life, by the author, at Naples Zoological Station, Deceember, 1907. view with all but one of the mouth-arms remored. The muscular layer is also removed
orer the area on to left side of the fgure in order to show the canal-system. B, section hrough medusa showing central stomach and unitary subgenital space below it. C, cross-
section through subgenital space (sparsely dottec) and stomach (with thiclly placed inear
 and viewed from cut end. E , cl.
organ seen from exumbrell side.
long as bell-radius. They are somewhat thicker (downward) than wide and arise from the arm-disk at 45° apart. Thus in a medusa 168 mm . in diameter the mouth-arms were each 46 mm . long and 54 mm . thick. Each mouth-arm bifurcates near its base and each of the two main branches gives rise to about 10 to 14 side branches, which in turn give off 30 to 40 smaller ' branches, and these again to 100 to 150 smaller branches, which branch still further dendritically. The farther out the branches the more dendritic and the less dichotomous is their mode of branching.

A large number of short, club-shaped a ppendages between the frilled mouths terminate in bluntly conical to flatly expanded, disk-like ends covered with small, wart-like tubercles.

Besides these short appendages, less numerous but somewhat larger ones terminate in a flattened ball-like to disk-like end set in a socket. At the point of bifurcation of each of the 8 main mouth-arms is a filament which is circular in cross-section and nearly half as long as in a swollen end. Centripetal to these 8 main filaments are 3 to 5 other somewhat shorter filaments arising between the frilled mouths of each mouth-arm. Near and at the center of the arm-disk there are numerous slender filaments, about one-third as long as the main filament, which terminate in expanded disk-like conical ends

A unitary, cruciform, subgenital space opens outwardly at the 4 subgenital ostia. Thus it is possible to pass a probe into any one of the subgenital ostia and out through the one on the opposite side of the arm-disk without penetrating any tissues of the medusa; the subgenital space being actually outer world (C, fig. 410). The complexly folded, genital membrane is developed upon the sides and upper floor of this subgenital space, and thus upon the lower floor of the central stomach.

The central stomach is large, occupying the spacious cavity of the central dome of the exumbrella (B, fig. 401). II to I3 radial-canals per octant (88 to 124 in all) arise from the tinct ring-canal, but instead there are numerous, lateral anastomoses between the radiating canals, forming a complex network of vessels under the floor of the subumbrella. The main canals of the 8 mouth-arms empty by 8 adradial openings into the central stomach. Each of these mouth-arm canals bifurcates, and the two mann branches give rise to numerous, lateral diverticula which lead to the gutters of the frilled mouths.

There is a well-developed unitary, marginal ring of circular muscles and an inner zone of radial-muscles in the subumbrella. Bethe, 1903, has shown that when the medusa pulsates to the sense-organs, from which the contraction-impulse arises. This more rapid response of the radial-muscles is due to the fact that their latent interval between the reception of the stimulus and their response is less than in the case of the circular muscles. Bethe also finds that the normal pulsation consists of 80 to 100 contractions at fairly regular intervals with periods of total rest between them. These are then followed by a pause which lasts as long as 3 to 20 of the normal pulsations. For further details of the character of the pulsation, the reader should refer to Rhizostoma pulmo.

The bell of this medusa is rich olive, tending to orange, or to brownish-yellow, being especially dark and brownish on dome-like apex of the exumbrella. The rich yellow color is found on both exumbrella and subumbrella, and is due to the presence of numerous yellow of the medusa. Claus, 1883 , finds these cells in the 8 lobed ephyra when only 5 to 2 mm . wide.

The arm-disk and mouth-arms are usually pale milky-white tinged with delicate creamyyellow. The free outer edges of the mouths are tinged with purple varying to blue or violet. The terminal portions of the appendages, which arise between the frilled mouths, are deep blue tending to purple, or violet.

This medusa is found in the Mediterranean, but is quite capricious in its appearance, being at times very rare. According to Graeffe it is not seen every year in the Adriatic at Trieste, but adult medusx are usually seen from July to September, while small ones are found winter, when they become very rare, being only occasionally found in mid-winter. Keller is of the opinion that this medusa is a deep-water species which only occasionally comes to the surface when sexually mature, and that the young remain near the bottom of the sea. Vanhöffen, 1888, records the capture of a young individual of this medusa at Assab in the Red Sea on June ro, r885. The medusa must have been introduced into the Red Sea through the Suez Canal. It has also been found in the Atlantic, near the Canary Islands. (See C. ambulacrata Haeckel.)

The development of this medusa has been studied by Busch, Frantzius, Gegenbaur, Kowalevsky, Claus, Goette, du Plessis, Hein, and others, and has furnished some of the vascular cavity of the scyphostoma.

The young larvæ are set free from the mouths of the mother medusa as planulæ or young gastrulx. Segmentation is total and nearly equal. The gastrula is formed by invagination as in the case of Aurellia. The free-swimming planula is pyriform to oval, flattened laterally, and ciliated externally. The entoderm of the planula is entirely encased by the ectoderm through the closure of the blastopore, and thus the planula is a two-layered sac which attaches self to the bottom by means of its broad anterior end, and then loses its cilia.

An invagination of the ectoderm takes place at the posterior (now uppermost) end of the that two backwardly projecting pouches remain in the plane of the wide lateral manner while these pouches are absent on the flat sides of the larva. The ectodermal invagination forms the mouth and œsophagus; while the entodermal evaginations form the first pair of ateral stomach-pouches.. An opening is soon formed where the invaginated ectoderm has fused with the entoderm, and thus the throat-tube is placed in communication with the central stomach. The second pair of gastric pouches now arise 90° apart from the first and, according to Goette, are produced by evagination entirely from the ectoderm of the lower end of the roat-tube
Hurellia only the upper fisen. Zool., Bd. 58, p. 52r), finds, however, that in the case of Aurellia only the upper floor of the second pair of stomach-pouches is formed from
the ectoderm of the throat-tube, their lower (aboral) floor being of entodermal origin and derived from the wall of the primitive stomach. Hyde's research appears to be very carefully prepared, and it is probable that the second pair of stomach-pouches in Cotylorhiza is of mixed (ectodermal and entodermal) origin as in Aurellia. The apparent analogy between the ectodermal œesophagus of the young scyphostoma and that of the Anthozoa is very interesting, for it may imply a close generic relationship between the Anthozoa and the Scyphomeduse. In this connection we must, however, give due weight to the work of the Claus-Hadzi school (see Genus Chrysaora) who find that the 4 primary stomach-pouches and the lining of the throat are wholly of entodermal origin, an
hydropolyps more closely than the Anthozoa.
The scyphostoma develops 16 tentacles and then gives rise to buds which grow out from the sides of the body. The wider end of the pyriform bud is adjacent to the parent scyphostoma, and the mouth is at this broad end. The bud is set free and swims, rotating through the water with its narrow posterior end directed forward. Soon, however, the bud attaches itself to the bottom by means of its narrow aboral end and then develops into a new scyphostoma.
This asexual development of lateral buds by the scyphostoma of Cotylorhiza seems to be a normal process and is described by Goette, 1887, p. 24, and Claus, 1892 . Claus, I892, reared Cotylorhiza in an aquarium and found that eggs laid at Irieste in September developed July. They strobilated in August. The strobilization is monodiscus, the scyphostoma giving rise to one ephyra. The 8 marginal sense-organs are apparently developed out of the bases of the 8 perradial and interradial tentacles, while the 8 adradial tentacles degenerate and are absorbed. A similar process takes place in Cassiopea xamachana, according to R. P. Bigelow, 1900 . The gelatinous substance is secreted by the entoderm.

Claus, 1883, has studied the young ephyræ of Cotylorhiza tuberculata. When only I. 75 mm . wide the ephyra has a simple 4 -cornered mouth similar to that of the single-mouthed Scyphomedusx. There are 8 long, slender, cleft lobes in the radii of the 8 marginal sense-
organs. The central stomach gives rise to 16 blindly ending radiating diverticula, 8 in the organs. The central stomach gives rise to 16 blindly ending radiating diverticula, 8 in the
radii of the marginal sense-organs and 8 adradial in position. There is no ring-canal. These canals are lined by unicellular yellow-brown algæ (Zoochlorella). There are 4 gastric cirri, one in each interradius. The 4 lips are simple and cruciform and devoid of a marginal fringe of tentacles. When about 2.25 mm . in diameter the oral fringe of tentacles begins to develop around the edges of the still cruciform mouth. When 2.5 to 3 mm . wide the ring-canal develops by fusions between the adjacent edges of the i6 radiating canals, and 8 adradial velar lappets begin to grow out from the deep notches between the 8 primitive ephyra-lobes.
When 3 mm . wide each quadrant of the cruciform mouth is bifurcated twice, giving 16
terminal forks to the entire mouth. The central mouth, however, still remains open. At this
stage there are still only 24 lappets, 16 rhopalar and 8 velar. When 4.5 to 5 mm . in diameter the ephyra has 8 (4 pairs) of cleft mouth-arms and the ring-canal has become unrecognizable, owing to the fusion into a network of numerous, lateral vessels which arise from the 16 radialcanals. It is evident that at first the ephyra is like that of the single-mouthed Scyphomedusx and that only later it acquires the characters of the multi-mouthed Rhizostomæ. This is true of all known ephyrx of the Rhizostomæ, and it furnishes the strongest argument for the heory that the Rhizosto For further details

噱 Claus, Goette, Hein, and Kowalevsky.

Bouvier, 1907 , finds 1 rachurus to be commensal with this medusa.
Haecke's Cotylorhiza ambulacrata described from a preserved specimen from Lessona, Canary Islands, Atlantic Ocean, appears to me to be identical with C.
within the limits of variation of the typical medusæ found at Naples.

Genus Polyritiza L. Agassiz, 1862

generic characters.

Rhizostomata dichotoma with mouth-arms bifurcated two or more times. Exumbrella without a dome but with a central concavity and with radiating furrows. Numerous simple filaments between
network of vessels.

Homopneusis frondosa Lesson and Orythia incolor Quoy and Gaimard are believed by Haeckel to belong to the genus Polyrhiza, but the descriptions and figures of these medusx consult Lesson, R. P., I829, Voyage de la Coquille, Mollusques, plate 12; and Quoy et Gaimard, 1833, Voyage d l'Astrolabe, Zoophytes, tome 4, p. 297 (not plate 25, figs. 6 to 10; these are mollusca).

Polyrhiza vesiculosa L. Agassiz.
 P. 247 , taf. 9 , fig. 7 (anatomy of mouth-arms).

Bell 50 to 60 mm . wide, Hlat, with a pit at center of exumbrella. 32 dichotomous, radiating furrows are separated by a deep annulat furrow from the equally wide marginal zone of the exumbrella. 8 rhopalia. 80 lappets. In each octant are 8 rectangular velar and 2 small rhopalar lappets. The mouth-arms branch dichotomously 4 to 6 times. There is a large cluster of long, simple filaments at the center of the arm-disk. 32 radial-canals, 8 large rhopalar and 24 narrower canals, all connected one with another by a wide-meshed network of anastomosing vessels. There is no definite ring-canal.
 in the Red Sea, at Tur and Suez.

RHIZOSTOMATA TRIPTERA Vanhöffen, sensu Maas, 1903

Rhizostomæ in which the lower parts of the 8 separate mouth-arms are 3 -winged or Y-shaped in cross-section, being expanded in a ventral and 2 dorsal lamelix. The 3 lamellx narrow outwardly and meet in a point at the lower end of the arm. The frilled mouths are borne upon the 3 lamellx, especially along their free edges. The mouth-arms do not bea scapulets. The ring-muscles of the subumbrella are powerful and the radial-muscles weak.

There is no sharp line of demarkation between the Rhizostomata dichotoma with mouth
cross-section. The two groups may, however, be maintained apart more for convenience of lassification than because of any non-intergrading distinction between them.
 radial muscies are powerfully and the circular muscles weakly developed whereas in the Another distincta the reverse is the case, the circular muscles being the more powerful.
 arm simply duct of each mouth arm simply bifurcates sending a branch to each arm of the V-shaped
lower part of the mouth-arm. Rhizostomata triptera, however, each
axial duct gives off 3 lateral branches which extend downward along the lines of the 3 rows of frilled mouths and usually rejoin the axial duct at the lower end of the arm. This may be made clearer by saying that in the Rhizostomata triptera the arm is Y shaped in cross-section, and the axial
duct passes down through the middle of the Y while its 3 lateral branche
 In the Rhizostomata dichotoma, however, a single duct extends down in the angle of the V and sends off 2 branches into the arms of the V (see text-figures 404 and 41I).
The genera are very closely related, being distinguished by the presence or absence of appendages upon the mouth-arms and by the arrangement of the canal-system. A description
of the genera follows:

Catortylus L . Actasszz, 8862 . Neither clubs, flaments, nor other appendages upon the mouth-arms. The network of
canals on the iner side of the ring-canal ends blindly without connecting with the stomach Lychnorfiza HAxccrx, 1880 . Similar to Catosstylus but with filaments, and no dubs upon the

- Crambione MAAs, 1903. Similiar to Canostylus but with clubs and flaments upon the mouth-rmes-arms.

Phyllorhizaz L. Acas sszz, 1862 . Mouth-arms with lateral fiaments, but without clubs, as in Iychhorhizac. Canal system
as in Mastig gas.
Versura Hazcrxis,
 radial side of the stomach. No ring-canal, but a marginal networik of vessels. An outer and an inner zone of ring

Genus CATOSTYLUS L. Agassiz, i862.

 Exped., Bd. 3 , Lfg. 1, P. 5 . 5 2.
Toxoclyus

The type species is Catostylus mosaicus of Australia, first described as Cephea mosaica by Quoy and Gaimard, 1824. Agassiz designates this as the type of the genus.

generic characters.

Rhizostomata triptera the mouth-arms of which bear neither clubs, filaments, nor other appendages. 16 radial-canals, 8 rhopalar, and 8 adradial. The rhopalar canals extend to appendages. 16 radial-canals, 8 rhopalar, and 8 adradial. The rhopalar canals extend to
the bell-margin, but the adradial canals end in the ring-canal. On both its inner and outer sides the ring-canal gives off anastomosing vessels which may join with the radial-canals, but which do not connect directly with the central stomach.

Among characiers of minor importance, the marginal zone of circular muscles in the subumbrella is only partially interrupted in the 8 principal radii. There is an exumbrella pit with radiating furrows above each sense-club

Vanhöffen, rgoz, shows that Haeckel's Crambessa and Toxoclytus are identical and must be merged. The only possible distinction appears to be that in Ioxoclytus there are 4 separate genital sacs, whereas in Crambessa there is a unitary, cruciform genital cavity.
Catostylus is very closely allied to Lychnorhiza and Crambione, being distinguished solely by having neither filaments nor clubs upon the mouth-arms.
Haeckel's Crambessa is equivalent to the genera Catostylus, Toxoclytus, and Rhacopilu of L. Agassiz, 1862. The name Catostylus takes precedence over all of the others, and Haeckel should have used this name instead of inventing a new one
rested with commensal plant-cells which in brackish or muddy harbors. They are often infested with commensa! plant-cells which may give them a peculiar opaque yellow-brown coloration as in C. mosaicus in certain parts of Australia; for von Lendenfeld finds that in the harbor of Melbourne the medusa is not infested with plant-cells and is deep cobalt-blue in also seen a swarm of these cobalt-blue medusx in Brisbane Harbor, Queensland
and

It is possible, as Vanhöffen surmises, that "Cephea" dubreuillii Reynaud (I830, Lesson's Centurie Zoologique, p. 75, planche 23) may be a Caiostylus, but the description and plate are so unsatisfactory that I think knowledge will be advanced by dropping the species. It comes from Pondichery, Indian Ocean.
Catostylus is abundant in the Indo-Pacific region, but only 2 or 3 species are known from the Atlantic coasts of Africa and southern Europe, and not one has been found in North

Synopsis of the Forms of Catostylus.

	C. cruciatus.	C. palmipes.	C. tagi.	C. pictonum C. tagi (?).	C. mosaicus.
Diameter of bell	120 to 150	64	500	400	350
Shape of bell, and character of exumbrella surface.	Hemispherical, with deep radiating furrows.	Hemispherical, with fine granulations.	Flatter than a hemisphere with dendritically branching furrows.	With regularly rectangular elevations bordered by furrows.	Nearly hemispherical, covered with coarse granulations
Number of lappets in each octant of bell-margin.	Six; 4 large triangular velar, 2 very small ocular	Eight; 6 large square velar, and 2 oval ocular.	$\begin{aligned} & \text { en; } 4 \text { pairs of large, } \\ & \text { triangular evelar } \\ & \text { and \& small, point- } \\ & \text { ed ocular. } \end{aligned}$	Ten; 4 pairs of large triangular velar, ocular.	Variable, about 16 oval, long, all sim lar each to each.
Length of moutharms in terms of bell-radius (r)	1 to 0.5	$r \pm$	$2 r$	-2r	Ito 0.5
Length of 3 -winged, pointed, lower end of each arm of simple, cylindrical, upper part of arm.	4	6	3 to 4	3 to 4?	6
Color.	Bell yellowish-white Gonads and ringcanal rose-red, or with bluish-white bell, deep blue lappets, and red mouth-frills.	?	Opalescent yellow or bluish-white. Some times brown. Ridges of exumbrella purpleyellowish.	Yellowish or opales- cent greenish- white, rarely reddish-yellow. yelliow.	$\begin{aligned} & \text { Bell and arms yel- } \\ & \text { lowishh-white. } \\ & \text { Opaque. Some- } \\ & \text { times cobalt-blue. } \end{aligned}$
Where found.	Coast of Brazil, harbor of Rio de Janeiro.	Northern coast of Australia to Amoina.	$\begin{aligned} & \text { In harbors from } \\ & \text { Portugal to Sene- } \\ & \text { gambia, Africa. } \end{aligned}$	Brittany, Atlantic coast of France, August.	$\begin{aligned} & \text { East coast of Aus- } \\ & \text { tralia, Brisbane to } \\ & \text { Mallourne. In } \\ & \text { Iarge wwarms in } \\ & \text { harbors. } \end{aligned}$

American waters. There are a number of local races, as is the case with Cassiopea, which also thrives in harbors.

Catostylus mosaicus L. Agassiz
 Catossylus mosacicus + C. wilkesii, Acassiz, L., 1862 , Cont. Nat. Hist. U. S., vol. $4, \mathrm{P}$ P 152 .

Bell fully 250 to 350 mm . wide, somewhat flatter than a hemisphere when expanded. Exumbrella covered with coarse granulations. 8 rhopalia without an ocellus, but with an exumbrella sensory pit having radiating furrows in its floor. There are about 128 long, oval, marginal lappets, about 16 in each octant, all similar each to each and with smooth exumbrella urfaces. Arm-disk somewhat wider than bell-radius. There is a unitary subgenital cavity.

A gelatinous papilla is found upon the subumbrella on the outer side of the opening of each subgenital ostium. The 8 mouth-arms are about I .5 times as long as bell-radius. The laterally tapering lower part. The 3 expanded membranous lamellæ of the lower parts of the arms are 120° apart, and their free, outer edges branch profusely and bear the frilled mouths. The mouth-arms taper to a pointed end below. No clubs, filaments, or other appendages. The mouths are bordered by small knobbed tentacles, which wave incessantly. 16 radial-canals leave the cruciform central stomach and are connected by a ring-canal which gives off, both on its outer and inner sides, an anastomosing network of vessels which fuse with the radialcanals, but do not extend inward to the margin of the stomach.

This medusa is normally cobalt-blue, but in Port Jackson, New South Wales, Australia it is infested with plant cells (Zoöxanthelle), which give it a uniform creamy or brownish the deep blue color appears. In Brisbane Harbor and at Melbourne, Australia, the medusa is not commonly infested with plant cells and is deep cobalt in color. C. mosaicus occurs in vast swarms in the harbors and estuaries of the Australian coast from Brisbane to Melbourne during the Australian summer and autumn.

It swims by an incessant series of pulsations of its bell-rim and tends to oppose the current t is the most abundant medusa along the Australian coast, and is often cast up on the beache in long wind-rows during storms.

A small fish, Irichinurus declivis, is often seen living commensally with the medusa

Catostylus cruciatus.

Rhizostoma cruciata, Lesson, 1829, Voyage de la Copuille, Zooph., p. 12I, planche 1I, fig. I.

(i) Rhacop ilus cyanoliobatus, AGatsstz, L., IDid., P. I5.. After mss.

Bell hemispherical, 120 to 150 mm . in diameter. 8 marginal sense-organs and 48 lappets 4 large triangular velar and 2 very small ocular lappets in each octant. There are about 32 deep, radial furrows in the exumbrella. Arm-disk as wide as bell-radius. The 8 mouth-arms are I .5 times as long as bell-radius. The simple, cylindrical, upper part of each arm is short,
while the lower part is about 4 times as long and tapers to a point. These lower parts of the mouth-arms are 3 -winged in cross-section and thickly covered with frilled mouths.

The medusa is yellowish-white with rose-red gonads and ring-canal, according to Lesson; Therding to Agassiz's note from Couthouy's manuscript, the bell is bluish-white with deep-blue marginal lappets and with carmine mouths upon the arms. It should be borne in mind that Crambessa mosaica of Australia is sometimes yellowish-white while other individuals are deep cobalt-blue. This yellowish-white is caused by unicellular, commensal plant cells which sometimes infest the medusa.

Found at Santa Catharina Island and at Rio de Janeiro, Brazil.

Catostylus palmipes

Bell 64 mm . wide, hemispherical. Exumbrella covered with fine granulations. 64 marginal lappets. In each octant 6 quadratic, truncated velar lappets, flanked by 2 oval the bell-radius. The cylindrical, upper shaft of the arm is only about one-sixth as long as the pointed, 3 -winged, lower part. These short, upper shafts of the 8 arms are bound one to another along their sides by 8 membranes, leaving only the pyramidal lower parts of the arms free. Neither clubs nor filaments. Subgenital ostia 3 to 4 times as wide as the columns between them. Color (?) Found from northern Australia to Amboina, Malay Archipelago. Most fully described by Schultze.
Lunel, 1893, observes that this medusa is often found commensal with a fish Carnex melampygus.

A variety of this medusa, in which the webs spanning between the basal parts of the moutharms and the arm-disk are not so well developed as in the typical C. palmipes, was found by the U. S. Fisheries Bureau steamer Albatross at a depth of 50 feet in Manila Harbor, Philippine slands, on January 13,1908 . Bell 56 mm . wide, flatter and more conical than a hemisphere. txumbrelta finely granular without furrows. 64 lappets. 2 small, oval ocular and 6 indisit arises from subumbrella, and 27 mm . wide at level of origin of 8 mouth-arms. 4 subgenital ostia slightly wider than perradial columns. A unitary cruciform subgenital cavity. Free parts of upper arms 5.5 mm . long, lower 3 -winged parts of arms 30 mm . long, 19 mm . wide, without appendages. Mouths extend to blunt tips of mouth-arms without naked areas. Canalsystem as in C. purpurus. General color in formalin dull ocher-violet, gelatinous substance milky

Catostylus tagi.

Bell hemispherical, 500 mm . wide. Exumbrella covered with dendritically branched idges which extend upward from the outer, pointed ends of the lappets toward the apex of the bell. 8 rhopalia, with an ocellus on the aboral side and an exumbrella sensory pit, the floor of the pit covered with radiating, branching furrows. 80 marginal lappets; in each octant 4 pairs of oval, pointed, velar between 2 small, pointed, ocular lappets, not half as wide or as long as the velar lappets. Arm-disk somewhat wider than bell-radius. The 4 subgenital stia are wider than the columns between them, and there is a unitary subgenital porticus. pper part of each arm is less than one-third as long as the 3 -winged, lower part. These lower parts bear 2 lateral, outwardly projecting wings which are about 60° apart, and a ventral (inner) wing which is 150° from the lateral wings. The wings taper to a point at the lower end of the mouth-arm. The free edges of the 3 membranous, leaf-like expansions of the arms are complexly folded and bear numerous mouths which are bordered by a row of small tentacles. There are neither clubs, filaments, nor other appendages upon the mouth-arms. The circular muscles of the marginal zone of the subumbrelia are interrupted in the 8 principal radii.
The cruciform central stomach gives rise to 16 radial-canals, 8 of which extend to the sense-organs and 8 are intermediate and adradial in position. All are connected by a ringcanal. Centripetal to the ring-canal the 16 radial-canals give off an anastomosing network
of vessels which fuse with the ring-canal, and on its outer side the ring-canal gives off a netof vessels which fuse with the ring-canal, and on its outer side the ring-canal gives off a net-
work which extends into the lappets and fuses with the outer ends of the 16 radial-canals. Each of the 8 principal mouth-arm-canals gives off 3 side branches which extend down the 3 membranous leaves of the arm and send branches off to the mouths. These 3 branches then fuse again with the central canal at lower end of mouth-arm.

The medusa is opalescent yellowish or milky bluish-white, sometimes brown. The dendritic ridges of the exumbrella are reddish or brownish-purple. Gonads yellowish.

This medusa is found in brackish waters near the mouths of rivers from Senegambia, Africa, to France. It is well described and figured by Grenacher and Noll.

Crambessaly rance, is closely related These rectangles are not quite as wide as the largest velar lappets and are all of the same size. They are arranged in a 4 -sided, cruciform system upon the exumbrella and are separated one from another by deep, parallel furrows. The velar lappets are said to be somewhat wider than they are long, and the mouth-arms are shorter than in C.tagi. Haeckel found this medusa in August on the southern coast of Brittany. He states that when the medusa's bell is 30 mm . wide, the mouth-arms have only a single row of mouth-frills on their ventral sides, as in his genus Haplorhiza, and the lateral, leaflike wings develop later

Catostylus stuhlmann

Crambessa sutulmanni, Chuv, r896, Mitheil. Naturhistor. Museum, Hamburg, Bd. r3, p. ro, taf. r, 2 fign
Bell hemispherical, 80 to 200 mm . wide. 8 marginal sense-organs, set within deep clefts in the bell-margin. 112 marginal lappets. The ocular lappets are short, pointed and small, but the 12 velar lappets in each octant project farther outward and have rounded margins.
They are separated one from another by long, deep grooves extending up the sides of the exumbrella. Each of these lappets is provided with a median longitudinal row of sharp-pointed projections on the exumbrella side. The 8 mouth-arms are bluntly pointed and are shorter than the bell-diameter. The subgenital ostia are one-third to one-fourth as wide as the column between them. A unitary, subgenital porticus.

The bell is yellowish-brown or milky-yellow, besprinkled with purple-brown blotches which are most numerous near the margin. The marginal lappets have rusty-brown, long tudinal median streaks. The arms are colorless and the mouths are usually spotted with brownish-purple.

8 specimens found 4 miles above the mouth of Quilimane River, East Africa, in February and March. Described in detail by Chun, 1896 .

This species resembles C. orsini in that the mouths are not developed upon the lower, subumbrella is interrupted near the margin in the 8 principal radii, but centripetal to this they are unbroken and form a complete annulus.

Catostylus orsini.

 deutsch. Tiefsee Expedition, Dam

Umbrella 65 mm . wide, with smooth, exumbrella surface flatly rounded with incurved margin. 8 marginal sense-organs. 144 small, sharp-pointed, marginal lappets. 16 vela lappets between 2 somewhat smaller, ocular lappets in each octant. A radial furrow extends up the side of the exumbrella in the line of the cleft between each adjacent pair of lappets. The 8 sense-organs are set within deep niches and there is an exumbrella sensory pit with on the inner side of which lies the ring-canal. Centrifugal to this furrow is a zone of power on the inner side of which lies the ring-canal. Centrifugal to this furrow

The arm-disk is nearly as wide as the radius of the bell and the 4 arm-disk pillars ar wider than the ostia of the subgenital porticus. The simple upper part of each of the 8 mouth rms is very short and only one-third as long as the 3 -winged lower part of the arm. It lower part of the arm. The upper part of the arm bears no dorsal mouths, but only a single row of frilled mouths along its ventral side. The large, 3 -sided, lower part of the arm is elongate prismatic, with a short gelatinous, pyramidal, bluntly pointed, 3 -cornered knob at its end Altogether the entire mouth-arm is about as long as the bell-radius. The lower part of the arm bears frilled mouths, but neither filaments nor other appendages. The lower end of the arm is naked and devoid of mouths, as in Catostylus stuhlmanni, and forms a blunt, triangula knob which on the outer side is nearly half as long as the upper part of the arm itself, bu only one-third of this length on the two radial sides
the frilled mouths. These 8 arm-canals enter the small, and send ramifying branches to the frilled mouths. These 8 arm-canals enter the small, central stomach, from which arise
16 straight radial-canals, 8 ocular and 8 adradial, connected one with another by a wide, circular vessel. An anastomosing network of vessels arises on the inner side of the ring-canal between the radial-canals, although this network does not fuse with the radial-canals themselves, but arises solely from the ring-canal. The radial-canals are about twice as wide as the ring-canal. The unitary, subgenital porticus is very small. Color (?) Found at Assab Red Sea, in June.

Crambessa stiphroptera, Schuxrzx, L. S., 1897, Abhandl. Senckenberg, Naturforsch. Gesell. Franisfurt a. M., Bd. 24, Heft 2,
P. I 59 , taf. 15 , fign. $4,5,5$

Bell flatly rounded, 100 mm . wide, with a smooth, exumbrella surface which lacks the protuberances found in C. mosaicus. There are 8 marginal sense-organs. The rhopalar, marginal lappets are slender and sharp-pointed, and in each octant there are at least 5 larger, cleft, velar lappets about io mm . long and 6 mm . wide at their bases. The arm-disk is about 38 mm . in diameter, somewhat less in width than the bell-radius. The 4 arm-disk-columns are nearly as wide as the 4 narrow, subgenital ostia. Lower arm 5 times as long as upper, the total length of both not quite equal to that of the bell-radius. Upper arm wholly free, differing in this respect in the number of its marginal lappets and in its narrow subgenital ostia from palmipes
The ex

The exumbrella displays 4 perradial areas of indistinct, round, brown spots which do extend to the bell-margin.
Found at Ternate, Malay Archipelago.

Catostylus viridescens.

Crambessa viridescens, Cguv, 1896, Mittheil. Natuirhist. Museum, Hamburg, Jahrg. I3, P. x2, taf. 1, fig. 2 .
Bell 80 mm . wide, hemispherical. Marginal lappets (?) Arm-disk wider than the bellradius. Subgenital ostia wider than the spaces between them. 8 short mouth-arms, not longer than bell-radius. Upper arm about one-fifth as long as the lower part. Bell sea-green, mouth-arms colorless. Frilled mouths dark-violet. Two specimens found at the mouth of
the Pangani River, East Africa, late in November. The marginal lappets were lost in both specimens. Characterized chiefly by its sea-green color.

Catostylus ornatellus.

Disk flatly rounded, the gelatinous substance thick. Size (?) The exumbrella is finely and evenly granulated, but these granules fuse into rows upon the marginal lappets. 8 marginal sense-organs and 80 marginal lappets. In each octant there are 4 pairs of bluntly pointed, nearly rounded, velar lappets, and 2 very small, sharp-pointed, lancet-shaped ocular lappets. The velar lappets adjacent to the ocular lappets project farther outward and are sharperpointed than the remaining velar lappets. There is a powerfully developed zone of ringmuscles in the subumbrella, but these are relatively indistinct and somewhat interrupted in the radii of the 8 ocular radial-canals.

The arm-disk is supported by 4 thick arm-pillars, which flare outward at their sub-
 but they appear wider than the genital ostia, for their flaring bases curve around in 8 hooklike lateral projections so as to partially close the openings of the genital ostia. The opening of each genital ostium is still further blocked by a triangular pointed flap of the arm-disk which projects over the middle of the ostium, so that each ostium appears as if constricted into 2 side-openings (see figures by Vanhöffen, 1888, taf. 2). The arm-disk is octagonal, and there is a unitary subgenital porticus with 4 folded, U-shaped gonads.

The 4 pairs of mouth-arms are very thick, but only about two-thirds as long as bellradius. The simple upper half of each arm is short, but the lower half gives rise to 2 dorsal,
wall-like lamellæ which bear the mouths on their free outer edges. The ventral side of each wall-like lamelx which bear the mouths on their free outer edges. The ventral side of earm are 3 -rayed in cross-section. The 2 dorsal lamellæ are set off one from another at an angle of about 60°, while the ventral lamella is at an angle of 150° from the 2 dorsal lamellæ. The outer edges of these 3 wing-like lamellæ fold in and out and give rise to short, lateral branches, along the edges of which the numerous mouths are placed. There are neither filaments nor other appendages among the mouths. The 3 wings of the mouth-arms end in a blunt point at the lower extremity of the mouth-arms.

The 8 ocular radial-canals are joined one to another by a thick, irregularly anastomosing network of canals. The ring-canal is not clearly defined. Other radial-canals (?) Color ($\stackrel{?}{?}$) Found at Puna Island, near Guayaquil, coast of Equador, South America.

Catostylus tripteru

Bell 50 mm . wide, hemispherical. 8 rhopalia, 48 lappets. In each octant 4 wide, nearly quadratic, velar lappets between 2 smaller, but longer, conspicuously projecting, ocular lappets. 8 arms, somewhat longer than bell-radius, are grouped in 4 pairs, and each consists of a stout, long, nearly cylindrical upper part of the arm which is twice as long as the 3 -cornered pyramidal, lower part of the arm. There are 3 wide, leaf-like projections on this lower par between the mouths. 4 horseshoe-shaped gonads. Found on the west coast of tropical Africa at Fernando Po Island, on the coast of Guinea. Color (?)

Catostylus turgescens.
Toxoclytus turgescens, Scruxxze, L. S., 1898, Denlsschr. Med. Nat. Ges. Jena., Bd. 8, P. 455, taf. 34, figs. 13, I4.
This is described by Schultze from a single specimen which appears to be quite abnormalso much so that I have but little faith in its value.

Bell flatly rounded, 90 mm . wide. Exumbrella smooth. 9 marginal sense-organs. Marginal lappets narrow and sharp-pointed. Number (?) Arrangement (?) 6 subgenita ostia wider than the arm-shafts. which separate them. Arm-disk flat. The 6 upper arms are
thick, arrowhead-shaped and curve outward; they are about 19 mm . long and If mm . wide. Lower arm sharply pointed, only about 12 mm . long. There are thin filaments upon the arm-disk between the mouths, but no other appendages. The canal-system consists of a fine anastomosing network on the inner and outer sides of the ring-canal. This network does not reach the margin. There are also unbranched radial-canals and blindly-ending centripetal canals. Amboina, Moluccas. Color (?)

Catostylus purpurus, sp.

This form is closely related to Catostylus stiphropterus, from Ternate, but differs in the number and arrangement of its marginal lappets and in its deep, uniform dark brownishpurple coloration.
Disk flatter than a hemisphere, 88 to 115 mm . wide, 26 to 35 mm . high. Exumbrella smooth. 8 rhopalia flanked by short, narrow, bluntly rounded lappets. A furrowed exumbrella sensory pit above each rhopalium Rhopalar lappets somewhat narrower than the velar. A and B, fig. 412 . In the middle of each octant there are a pair of cleft velar lappets, and these are flanked on their outer sides by 2 simple velar lappets, which are in turn bordered by 2 cleft velar lappets. Thus the lappets of each octant are arranged in sequence as folby 2 cleft velar lappets. (I) a small, simple, rhopalar lappet adjacent to the sensory-club; (2) a cleft velar appet; (3) a simple velar lappet; (4 and 5) 2 cleft velar lappets; (6) a simple velar lappet; (7) a cleft velar lappet; (8) a small rhopalar lappet. Thus the bell-margin displays 96 nearly equally spaced notches, there being 16 rhopalar and 80 velar terminal lappets.

The arm-disk is about as wide as the bell-radius at its origin from the subumbrella, but the level of the origins of the 8 mouth-arms it is somewhat less than three-eighths as wide as the beli-radius. There are 4 long, narrow, genital ostia nearly as wide as the 4 perradial projection from the arm-disk. A long, finger-shaped papilla arises from the subumbrella surface in the median line on the outer side of and close to the opening of each genital ostium, and this is in some specimens flanked by a pair of cocks-comb shaped, gelatinous projections from the floor of the subumbrella as is shown in c in text-figure 412. The armdisk is notched in each perradius. The unitary subgenital cavity is wide and cruciform.

There are 8 separate mouth-arms, each three-eighths as long as the bell-diameter. The lower, 3 -winged, expanded part of each arm is about 5 times as long as the simple, flattened, upper part of the arm. Each mouth-arm is bluntly pointed and its frilled mouths lack filaments or other appendages. The mouth-frills extend to the extreme tip of the arm and there is no naked, terminal portion.

A zone of powerfully developed, unbroken, circular, subumbrella muscles extends from he outer edge of the arm-disk to the bell-margin. The gelatinous substance of the bell is very tough and of a leathery consistency.

號 8 rhopalar and 8 adradial. These are connected by a ring-canal on the outer side of which there is a fine-meshed and on the inner side coarse-meshed network of anastomosing vessels.
The medusa is dull, uniform dark brownish
whe medusa is dull, uniform dark brownish-purple, resembling old leather soaked in
water abundant in Manila Bay, Philippine Islands, where in shallow water.
Seven specimens found in Manila Bay on December 9, 1907, are in the collection made by the U. S. Fisheries Bureau steamer Albatross, and a larger one on March II, Ig08. This argest specimen serves as the type of the species in the National Museum at Washington. Its dimensions in mm . are as follows: Bell in 5 wide, evenly rounded, 35 high; arm-disk 75 wide 8° long, upper arm 7 long, lower arm 5 long and 30 wide.

Fic. $412 .-$ Carostylus purpurust, sp. nov. Drawn by the aut

Genus LYCHNORHIZA Haeckel, I 880 .

The type species is Lychnorhiza lucerna Haeckel, from the coast of Brazil, Rio de Janeiro o Pernambuco.
generic characters.
Rhizostomata triptera with filaments, but without clubs, upon the 3 -winged mouth-arms. No axial terminal club at the end of each arm, and no club-shaped appendages between the canals extend to the bell-margin, but the adradial ones end in the ring-canal. Blindly ending centripetal vessels arise from the inner side of the ring-canal and may anastomose to some extent. On its outer side the ring-canal gives off a network of anastomosing vessels which extend into the lappets.

Among characters of minor importance the circular muscles of the subumbrella are entire and not broken in the 8 principal radii. The sense-clubs have each a sensory pit with radiating furrows over its floor. The subgenital ostia are wider than the columns between them.
This genus is so closely allied to Crambione that the two might readily be merged. It may, however, be distinguished by having no club-like appendages between the mouth-frills.

Lychnorhiza lucerna Haeckel.

 P. 249 (anatomy of muoth-arms).

The bell is flatter than a hemisphere, 120 to 150 mm . in diameter, and its exumbrella surface is besprinkled with fine granules and minute, sharp-pointed projections. There are 8 marginal sense-organs and 48 marginal lappets. The i6 lappets flanking the 8 marginal
 velar lappets are more nearly oval in outline and not quite so sharply pointed as are the ocular. The 8 stout, adradial mouth-arms arise from a large, gelatinous base which projects from the center of subumbrella. These 8 mouth-arms are laterally compressed, separate one from another, and about as long as the bell-diameter. The outer sides of the upper halves of the mouth-arms are smooth and bear no mouths, but below this the arm is developed into a ventral median and 2 large lateral wing-like membranes, all 3 of which meet at a point below. The edges of these 3 membranes are much folded and are lined by numerous mouths which are surrounded by minute, clubbed tentacles. In addition, the edges adjacent to the mouths bear numerous long filaments, $I 20$ to 160 upon each mouth-arm. Near their bases these dges of the ribbon being lined by a row of small, club-like nematocyst-organs. Each moutharm bears a pair of very long filaments and 15 to 20 somewhat shorter filaments, the remainder being still shorter. The longest filaments exceed the lenoth of the mouth-arms themselves.

There is a well-developed, unbroken zone of circular muscles in the outer part of the subumbrella. The central stomach is cross-shaped, the arms of the cross being in the diameters of the principal radil, while the 4 subgenital pits lie in intermediate positions. 16 radialcanals extend out from the central stomach: 4 in the principal radii, 4 in the secondary, and 8 in the tertiary (adradial) radii. The 8 principal radial-canals extend to the sense-organs, but the 8 adradial ones end in the ring-canal, which is at some distance inward from the fradial-canals. On its outer side the circular vessel gives rise to about 160 radiating vessels (20 in each octant) which extend into the lappets and are connected by numerous, anas omosing vessels forming a marginal network. Each of the 8 mouth-arms sends a canal into the central stomach. This main canal of each mouth-arm gives rise to 2 side branches, each of which extends down a lateral wing of the mouth-arm under the mouths, while the central canal extends down the center of the lower side of the mouth-arm. The gonads are much-folded membranes lining the inner walls of the 4 subgenital pits. They fill the greater part of the stomach cavity and according to Haeckel, they project outward through the subgenital pits. This is, however, unknown in any other rhizostomous medusa and is, I believe, merely a result shrinkage, etc., in the preservative fluid.
a detailed decrio Rio de Janeiro, Brazil. He ives a detailed description accompanied by figures.

I am inclined to believe that L. flagellata" is only the young of L. lucerna. In order the more readily to aid future students in settling this question, we present a detailed description of "L. flagellata:" The disk is 80 mm . wide, about 30 mm . high, and evenly rounded. It is very tough with thick gelatinous walls. The exumbrella is covered with fine granules, which become larger near the marginal lappets and set themselves in elongate lines over the lappets. There are 8 marginal sense-organs and 48 marginal lappets. In each octant 4 large, bluntly triangular, velar lappets between 2 very small, sharp-pointed, lancet-shaped, ocular lappets
which are hardly half as long and one-fifth as wide as the velar lappets. The marginal senseorgans are similar to those of Catostylus. The ring-muscles of the subumbrella are very powerfully developed, but are partially interrupted over the 8 ocular radial-canals. The armdisk is about as wide as the radius of the umbrella. It is 8 -sided, the narrow sides being in the radii of the arm-pillars; and the wide sides, which are 3 times as wide as the others, are in the radii of the 4 subgenital ostia. The subgenital ostia are thus 3 times as wide as the armpillars between them.

8 thick mouth-arms arise from the arm-disk, and these are about as long as the bellradius. The lower part of the arm is somewhat longer than the upper. There are 2 welldeveloped, thick, dorsal mouth-lamelle or "wings" which project from the lower arm and
these fuse with the ventral mouth-lamella at the pointed end of the arm. The ventral side of the mouth-arm is complexly folded and gives rise to lateral lappets. The flaments, which arise at the ends of these lappets between the mouths, are shorter than in the mature L. lucerna. The 4 sides of the genital organs are bent at right angles, thus forming a cross of 4 rightangled membranes which are very much folded. The gastrogenital cavity and subgenital porticus are small and much reduced.

I6 radial-canals (8 ocular and 8 interocular) emerge from the cruciform, central stomach These 16 radial-canals are put into connection one with another by a wide ring-canal which is about half-way between the center and the margin. Peripheral to this ring-canal there is
a network of vessels, although the 8 ocular canals run through and fuse with this network. 32 blindly-ending, centripetal vessels extend inward from the ring-canal toward the center of the disk, but they end blindly before reaching the edges of the stomach. There are 2 of these blindly-ending diverticula between each successive pair of radial-canals, and in some cases they fuse one with another. Color (?)
Found at Pernambuco and at Contigeriba on the coast of Brazil. The most complete description is that of Vanhöffen, I888, from which the above has been mainly derived.

I am inclined to believe that this medusa will prove to be only a young stage of $L y c h-$ norhiza lucerna Haeckel. The marginal lappets, mouth-arms, and canal-system are similar in both. According to Haeckel the bell is flatter and thinner in L. lucerna than in L. flagellata;
also in the mature L. lucerna the gonads protrude through the subgenital ostia, but this may also in the mature L. lucerna the gonads protrude through the subgenital ostia, but this may
be due to defects in preservation or to the general breaking up of these organs which commonly be due te defects in preservation or to the general breaking up of these organs which commony
occurs in medusx when the genital products are set free. Vanhöffen did not compare his specimen of L. flagellata with Haeckel's type in the Berlin Museum. The only distinguishing features according to the accounts of Haeckel and Vanhöffen are as follows:

Lychroorhiza lucerna:	Lychuorhiza fagellata:
Disk flat, gelatinous substance thin. Umbrella 120 to 150 mm . wide.	Disk nearly hemispherical, gelatinous substance thick. Umbrella 80 mm . wide ${ }^{*}$ *
Mouth-arms are twice as long as the radius of the umbrella.	Mouth-arms are only a little longer than the radius of the umbrella.
Mouth-arm filaments longer than the mouth-arms.	Mouth-arm flaments very short (broken off?).
4 separate, subgenital cavities. Gonads protrusive.	Subgenital porticus present. Gonads do not protrude through the subgenital ostia.

The presence of a unitary subgenital porticus in "L. fagellata" is its only really distinctive The presence of a unitary subgenital porticus in "L. Aagellata" is its only really distinctive
character, but this is often highly variable in development in different specimens of the same character, but this is often highly variable in development in differ
medusa. See Maas, Ig03, Scyphomedusen Siboga Exped., p. 3^{6}.

Lychnorhiza bartschi, sp. nov

Named in honor of Dr. Paul Bartsch to whose care and skill the excellent preservation of the medusa upon the Phippine expedition of the Albatross is due

Bell 74 mm . wide, flatter than a hemisphere and with smooth exumbrella surface. Gelatinous substance thick but not very rigid. 8 rhopalia, each with an ocellus and an exumbrella
sensory pit with dendritic furrows over its floor. $96(8 \times$ I2 $)$ lappets, 10 bluntly pointed velar lappets between 2 somewhat smaller ocular lappets in each octant. Arm-disk 48 mm . wide where it arises from the subumbrella, but only 40 mm . wide at the level of origin of the 8 moutharms. The 4 subgenital ostia ($s g o$) are crescent-shaped and each is covered above by a
gelatinous flap. They are only half as wide as the perradial columns between them. Each gelatinous flap. They are only half as wide as the perradial columns between them. Each
perradial column exhibits a niche, n, figs. 413 and 414 , on its outer side which bears a superperradial column exhibits a niche, n, figs. 413 and 4 I4, on its outer side which bears a super-
ficial resemblance to the subgenital ostia. The subgenital cavity is unitary. cial resemblance to the subgenital ostia. The subgenital cavity is unitary.
The 8 mouth-arms are laterally compressed and 36 mm . long the lower
the arms being 24 long and 23 wide. Numerous simple, laterally flattened, tapering filaments the arms being 24 long and 23 wide. Numerous simple, laterally flattened, tapering filaments The filaments upon the arm-disk are about 30 mm . long, but those from the outer parts of the mouth-arms are shorter.

The central stomach is cruciform and about 40 mm . wide. 16 simple 'radial-canals, 8 rhopalar and 8 adradial. These are all put into intercommunication with a wide ring-canal which is at some distance inward from the margin. The adradial canals terminate in this ring-canal, but the rhopalar canals extend onward to the sense-organs. On its inner side the

4 I 3.

413.

424.

ring-canal gives rise to 16 blindly ending networks of vessels which do not connect either with the stomach or with the radial-canals. On its outer side a fine-meshed network of vessels arises from the ring-canal and fuses with the rhopalar vessels. Around the margin at the bases of the lappets there is a marginal ring-canal of fine caliber. There is a unitary uninterrupted system of ring-muscles in the marginal zone of the subumbrella, but there are no radial muscles.

The gelatinous substance is translucent and milky in formalin, and the gonads, mouthfrills, and canal-system are milky-yellow. I am told by Dr. Bartsch that these colors in the living animal were nearly as they appear in the formalin specimen. Anchorage, Philippine Islands, on February I3, 1908 (text-figs. 4I3 and 4I4).

Rhizostomata triptera in which each mouth-arm is 3 -winged and the wings bear secondary branches. All 3 of these wing-like expansions and their branches bear mouths, among which
there are clubs and filaments. No terminal club at the end of each arm. With a unitary, subthere are clubs and filaments. No terminal club at the end of each arm. With a unitary, subgenital porticus and with 4 slit-like, subgenital ostia.

The canal-system consists of 8 vessels which extend outward to the bell-margin in the perradii and interradii, and 8 adradial canals which end in the ring-canal at some distance on the inner side the ring-canal gives off a network between each 2 radial-canals, which does not connect with the radial-canals themselves. The circular muscles are unitary, being unbroken by radial strands. The marginal sense-organs have a pair of eye-spots and a sensory pit with large radial furrows.

This genus is closely related to Catostylus, but is distinguished by having clubs and filaments upon its mouth-arms, these being absent in Catostyluis. It is also very closely allied to Lychnorhiza, but has both clubs and filaments upon its mouth-arms, whereas Lychnorhiza has filaments only.

Crambione mastigophora Maas

The bell may become 400 mm . wide and is highly arched and rounded. The gelatinous substance of the center is thick, while the margin is sharply set off from the center and is thin-edged. The exumbrella is smooth. There are 8 marginal sense-organs. These senseclubs have each a bulbular swelling on the subumbrella side and 2 lateral ocelli near the outer end of the club. There is also an entodermal lithocyst mass. There is a large, heart-shaped sensory pit on the exumbrella side above each sense-organ, and prominent radiating furrows spread out from the center of the pit-cavity just above the base of the sense-club. 2 small, pointed, lanceolate, ocular lappets flank each of the 8 sense-organs, and in each octant are also 8 to 10 velar lappets which are elongate, with rounded outer edges and deep clefts between them, and which increase in number with age.

The arm-disk is very wide and 8 -sided. The 4 interradial, subgenital ostia are narrow, depressions or fossæ in the arm-disk are somewhat higher than the subonenital ostia to which they bear a close superficial resemblance; thewhat higher than the subenital ostia to which however, for they are mere depressions in the surfa not to be confused with subgenital ostia, arms alternate in position with the subgenital ostia and the perradial fosss. In the young medusa they are grouped in 4 pairs, but in the adult they arise at equal intervals from the sides of the arm-disk. Basal parts of mouth-arms massive, nearly circular in cross-section; in their lower halves each gives rise to 3 projecting, lateral expansions or "wings" which meet at arm. There are numerous mouths along the lower inner lamella of each mouth-arm and along the edges of the 2 lateral wings, as in Catostylus. But unlike Catostylus many small, club-shaped and some long, tapering, filamentous appendages arise from both the lower and upper sides of the mouth-arms between the mouths.

The central stomach is cruciform, the axes of the cross being in the perradii. 4 perradial, 4 interradial, and 8 adradial canals arise from the stomach. The perradial and interradial canals extend to the bell-margin, but the 8 adradial vessels end in the ring-canal, which lies some distance inward from the margin of the bell. On its outer side the ring-canal gives off a network of vessels which anastomose with the perradial and interra dial canals. Centripof vessels. The ring-canal and the 16 radial-canals are of uniform and 16 open networks The peripheral network of vessels is of finer caliber and the i6 networks on the inner side of the ring-canal are of wider caliber than the outer network, but not as wide as the radiating vessels. These inner networks do not fuse with the radial-canals.

The 4 interradial gonads form a cross following the lines of the cruciform stomach of the medusa but interior to the border. The adjacent gonads lie so close one to another that the chamber which serves as a brood-sac for the planula larve. There is a well-developed, peripheral ring-muscle in the subumbrella, and this is not broken by radial muscle-strands, uch as are found in Mastigzas.

The gelatinous substance is translucent and milky. The frilled mouths are whitish and the clubs reddish. The gonads are flesh-colored, pinkish, or reddish.

This medusa is found at Amboina and at other places among the islands of the Malay Archipelago. It is described and figured in detail by Maas, 1903.

Crambione cookii, sp. nov.

Plate 74 , fig. 2.
Bell hemispherical, ino mm. wide, gelatinous substance tough. Exumbrella smooth in he flexible zone above the margin, but the inflexible central part of the dome is reticulated palia. 88 large, pointed, marginal lappets, equal in size each to each. Mouth-arms I. 5 times as long as bell-radius. The lower two-thirds of each arm is 3 -winged and the outer edges of these lamellæ are complexly folded and bear the mouths. 4 slender, uniform filaments, as ong as the bell-radius, arise from the arm-disk. There are about 2 to 6 globular, gelatinous appendages on the outer sides of each mouth-arm. These are about 6 mm . long.

The gelatinous substance of the bell is opaque, horny, milky-yellow. The marginal ing-muscles of the subumbrella are brown and the valleys of the exumbrella furrows are o lighter shade of the same color. Mouth-arms and vesicles translucent milky-blue. MouthFound b
ound by me on the surface along Great.Barrier Reef, off Cooktown, Queensland, Australia May 4, I896, during Dr. Alexander Agassiz's exploration of the reefs. Named in honor of he distinguished navigator, Captain James Cook, whose voyage first made the Queensland near the place wherein this medusa was found.

Genus mastigias l. Agassiz, i862.
Mastigias, Acassizz, L., I862, Cont. Nat. Hist. U. S., vol. 4, P. Y. F2.-CLavs, 1883 , Organisation und Entwick. der Medusen,

The type species is the widely distributed M. papua of the Indo-Pacific region. It was frst described as Cephea papua by Lesson, 1829.

generic characters.

Rhizostomata triptera with 3 -winged mouth-arms which terminate in a naked, clubhaped extremity. There are also smaller clubs and filaments between the frilled mouths. The mouths are developed not only along the edges of the 3 leaf-ike wings of the lower parts
of the mouth-arms, but also over parts of their flat, expanded sides. The central stomach gives rise to 8 rhopalar canals and numerous, interocular radial-canals all of which anastomose and finally connect with the ring-canal. The rhopalar canals extend straight to the senseclubs, but the inter-rhopalar canals end in the ring-canal. On its outer side the ring-canal gives off a network of vessels which extend into the lappet-zone and fuse with the outer ends of the rhopalar canals. The ring-muscles of the subumbrella are interrupted in the 8 rhopalar radii. A unitary subgenital porticus. No furrows in the exumbrella sensory pits.

The genus Desmostoma of Vanhöffen, 1888, conforms in all respects to Agassiz's Mastigias whereas the other species of Mastigias lack filaments and have only small clubs on the sides
of the mouth-arms in addition to the terminal club, I have merged it with Mastigias for the genera among Rhizostomata triptera are already too numerous, and are distinguished upo differences of such slight importance that the distinctions threaten to confuse rather than to clarify the system of classification.
Mastigias is closely allied to Pseudorhiza, but may be distinguished by its numerous, ing-canal between the 16 radial; indly without reaching the
The
the canathsystem of von Lendenfeld's Phyllorhiza punctata is similar to that of Mastigias, The following synopsis of the forms of Mastigias may be of service. r is the length the radius of the exumbrella

	M. papua.	M. papua var. siderea.	M. papua var. siboga.	M. ocellata.	M. pantherina.	M. gracile.
Number of velar lappets.	8×8. Rounded.	8×8. Rounded.	$\begin{array}{\|l\|} 9 \times 8 . \\ \text { lar. Rectangu- } \end{array}$	6×8 or 12×8 truncated. Rec- tangular.	$\begin{aligned} & \text { I6 } 68 . \text { Rectan- } \\ & \text { gular. } \end{aligned}$	5×8 or 10×8.
Length of mouth-arms.		$2 r$		τ	$2 r$	$-T$
Length of ter- rninal clubs.	25	r	$2 T$	'	4 to 6 r	One-sisth r.
Color.	Bell blue, greenish olive, or brown; with white, brown, or yéllowish spots.	Bell blue, greenish olve or brown; with white, brown, or yellow- ish spots. ish spots.	Bell yellow (?) with orange (?) spots. Canals to rose-colored.	Bell reddishbrown with ringlize spots of white and brown.	Bell brown with darker White White spots ringed with black.	:
Where found and remarks.	Fiji Islands, Japan, Malay Archipelago, Indian Ocean	$Z_{\text {Anzibar, }}$	Malay Archipelago.	Indian Ocean Hongkong, Cocos Islands	Samoa.	Red Sea. Distinguished by long filament on arm-disk.

Mastigias papua L. Agassiz.

Bell 30 to 80 mm . wide, usually hemispherical, sometimes flatter and sometimes fuller than a hemisphere. Gelatinous substance firm. Exumbrella surface with very fine granulations. 8 rhopalia, each with a pigmented mass of crystalline concretions and a shallow, exumbrella, sensory pit without furrows. 80 marginal lappets. In each octant 2 small, pointed, ocular and larger, rounded velar lappets with deep furrows between them extending The 4 subgenital ostia are of the exumbrella. Arm-disk somewhat wider than bell-radius. somewhat constricted in the middle. Subgenital porticus unitary between them and are each as long as bell-radius. The simple upper part r. 5 times as long as the 3 -winged lower portion of the arm. The frilled mouths are developed not only along the edges of the 3 winos, but also for some distance inward along the sides of each leaf. Each mouth-arm usually terminates at its lower end in a club-ike filament which may be as long as the diameter of the bell, but is sometimes reduced in size or even wholly absent. This club is triangular in cross-section and contains an axial canal. A large number of small, club-shaped vesicles arise from between
the mouths on the outer sides of the mouth-arms. The central canal of each mouth-arm give off 3 side branches which lead to the 3 rows of frilled mouths of the winged, lower part of the arm. All 3 of these canals fuse again with the axial-canal at the base of the terminal club and extend onward as the axial-canal of the club

The central stomach is cruciform and gives off 8 straight radial-canals which extend to the sense-organs. These canals are all connected by a wide ring-canal in a zone at a considerable distance inward from the margin. About 7 to 9 anastomosing radial-canals a arise from
 into the lappets and fuse with the outer ends of the 8 rhopalar canals. The circular muscles of the marginal zone of the subumbrella are widely interrupted in the 8 principal (rhopalar) radii. The gonads are 4 folded walls forming cruciform sides of the subgenital porticus.
Color quite variable. Bell and mouth-arms usually greenish-blue, or olive-green to olive-brown, and there are a number of yellow, white, or occasionally brown, blue, or green oval spots over the exumbrella, especially near the margin. The frills of the mouths may be olive, greenish-blue, yellowish-green, or brown. The 8 rhopalar radial-canals are darker. This medusa is widely distributed over the Malay Archipelago, Indian Ocean, and
China Sea to Japan, and outward over the Pacific to the Fiji Islands.
uary, 1898 . It was 5 mm . in diameter and quite flat and disk-shaped. There were 8 marginal sense-organs.' The central mass of dark-brown entodermal pigment granules of the sense-organ was developed, but the peripheral shell of transparent granules had not yet made its appearance. There were 24 marginal lappets, the 16 ocular lappets being about twice as long as the 8 velar lappets. There were 16 radial-pouches from the stomach, of which 8 went to the senseorgans and 8 to the velar lappets. The subgenital porticus was already unitary and the
brachial disk was suspended from the floor of the subumbrella by means of 4 gelatinous pillars, exactly as in the adult. The ephyra possessed only a simple, central mouth opening, having 4 cruciform lips. The margins of the lips were lined with a row of short, slender tentacles with knob-like ends exactly like those that surround the mouths on the mouth-arms of the adult medusa. No trace of the genital organs
could be detected, but the gastric cirri were represented by 12 short filaments (3 in each Fic. 415 - -Mastigias papua, after Vanhöften, represented by I2 short filaments (3 in each
in Voldivia Expedition. quadrant). The color of the e not yet begun to develop. Mastigias papua swims very rapidly by an incessant contraction and expansion of the bell-rim. Being an abundant and variable form, it has givelago and M. siderea of the east varieties, such as M. papua var. siboge of the M.
coast of Africa. M. physophora Kishinouye is another variety found abundantly off the coasts of Shima and Sagami, Japan, during summer and autumn. Its bell is at least 100 mm . in diameter and is light-brown with numerous, round, dark-brown spots near her margn it
idently only a large, dark-colored variety of M. papua. Kishinouye gives an excellent series of drawings of this medusa.

Mastigias papua var. siderea

Bell flatly rounded, 70 mm . wide. 8 marginal sense-organs and 80 marginal lappets. Ocular lappets narrow, but the 8 intermediate lappets in each octant are semicircular in outline.

Arm-disk wider than bell-radius, and the subgenital ostia are twice as wide as the radial supports between them. 8 wide, ocular radial-canals and 7 anastomosing, radial vessels in each octant. Mouth-arms are twice as long as bell-radius, the simple upper part of the arm being somewhat shorter than the lower, 3 -winged part. Each arm terminates in a single club as long as the bell-radius.

Bell light yellowish-brown with round white spots, which are largest over the ring-canal and smaller near the margin, where they are arranged in 3 or 4 radiating rows between each successive pair of marginal sense-organs. 8 blackish streaks along the 8 ocular radial-canals on the subumbrella, and also white specks in each octant of the subumbrella between th stomach-pouches and the circular furrow. Arms brown with small white spots. Filament yellowish.

Found along the Zanzibar coast, East Africa, in August and September, and in the western parts of the Indian Ocean

Chun, 1896 , gives a detailed description of the adult and the young of this species.
Chun, I896, gives a detailed description of the adult and the $\begin{aligned} & \text { Haeckel's Eucrambessa mülleri from Madagascar is probably identical with this species, }\end{aligned}$ but is so imperfectly described that we will never be able to determine it with certainty.

Mastigias papua var. sibogæ Maas.

Bell massive, rounded, and when mature 120 mm . in diameter. There are about rectangular velar lappets with rounded angles in each octant between sense-organs. The 4 interradial ostia of the subgenital porticus are 3 times as wide as the columns between them There are 7 to 10 anastomosing radial-canals between each successive pair of rhopalar canals. Mouth-arms as long as the bell-radius. There are numerous small, rounded clubs upon each of the mouth-arms and also a terminal appendage, which is triangular in cross-section and nearly as long as the bell-diameter

The ground color is yellowish (?) with orange (?) spots. There are no ring-shaped pots upon the exumbrella. There are 8 violet radial bands upon the rhopalar canals. The system is rose-colored and the gonads are orange.

This variety is found in the Malay Archipelago, and is described in detail by Maas, Igo3 It is distinguished from the typical M. papua by the absence of "eye spots" upon the exumbrella, by its yellow or orange color, and by its nearly rectangular velar lappets

Mastigias ocellata

This medusa is distinguished from M. papua by the peculiar "eye spots" on the exumbrella. These may be described as white circles with a brown center and brown rim. There are also other simple brown spots on the exumbrella. The mouth-arms are shorter than in M. papua, being shorter than the bell-radius, and the terminal clubs are not longer than the bell-radius. Velar lappets more numerous than M. papua, there being about I2 rounded velar lappets between 2 narrow, pointed, prominently projecting, ocular lappets in each octant. There are 15 to 20 anastomosing radial
instead of about 7 to 9 as in M. papua.

General color reddish, with numerous white, brown-rimmed, and centered "eye spots" on the exumbrella. Tips of terminal club blue

The medusa becomes about 50 to 60 mm . wide and is found in the eastern parts of the Indian Ocean and in the China Sea. Straits of Sunda, Hongkong in October, Cocos, and Thuary in the. The Albatross found small medusx in Mar in January in the Philippines, in 1908.

Mastigias pantherina Haeckel.

This is known only from a preserved specimen, briefiy described by Haeckel. It appears to be related to, if not identical with, M. ocellata, having the same peculiar "eye spots" on the exumbrella. The velar lappets are said to be truncated and rectangular and to be more numerous than in M. ocellata, there being 16 in each octant instead of about I2, as in M. ocellata. Mouth-arms are much longer than in M. ocellata, being nearly as long as bell-diameter. Th simple upper part of the arm is hardly half as long as the 3 -winged lower part, whereas in
M. ocellata and M. papua the upper part is longer than the lowest part of the arm. Terminal club very much longer than in other forms of Mastigias, being 2 or 3 times as long as the bell-diameter
dark-brown with white spots ringed with black. Bell-maroin black
Found at Samoa, tropical Pacific.
Mastigias gracile.
Desmostoma gracile, VanHörfen, 1888 , Bibliotheca Zoologica, Bd. I, Heft 3 , pp. 35 , 45 , taf. 4 , fign. 5-7.
Disk flatly rounded or hat-shaped, 35 mm . wide, thin at margin, but very thick at apex. Exumbrella besprinkled with irregularly placed clusters of small warts. 8 marginal senseorgans, the marginal lappets irregularly arranged, there being 5 or 10 rectangular velar lappets in various octants; thus some marginal sense-organs may be close together, while others are far apart. There is a wide, well-developed zone of ring-muscles, confined, pillars. The subgenital pilars. The subgenital ostia are twice as wide as pillars of the arm-disk. These out appear double, thus giving the false appearance of 8 instead of 4 genital pits. This is due to
the fact that each of the 4 interradial gonads is separated into 2 lateral rays by means of a cenral gelatinous flap which divides the subgenital ostium into 2 side-opens by
The 8 mouth-arms are hardly as long as the bell-radius and consist of a simple, short, thick, upper part of the arm and an expanded 3 -winged, lower part, which is 3 to 4 times as ong as the upper. The lower part is thickly beset with frilled mouths, there being short, at the free end of each arm, about one-sixth as long as the arm itself. There is also a large cluster of about 8 to 20 linear filaments upon the arm-disk at the bases of the 8 mouth-arms. These are about 1.5 times as long as the diameter of the bell.

Central stomach large and cruciform, 8 radial-canals arise from it and extend outward to the marginal sense-organs; of these the 4 interradial canals are long and the 4 perradial ones short. Between these 8 main canals are numerous, slender canals which arise from the All of these canals are set into communication one with another by means of the circular canal near the bell-margin. On its outer side the ring-canal gives off a network of slender vessels which anastomose over the lappets. The subgenital porticus is very small. Color (?)

Vanhöffen describes 3 examples of this medusa from Assab, on the Red Sea. They were found in September. He gives it the generic name Desmostoma, defining the genus as being similar to Mastigias, but with a large cluster of flaments upon the arm-disk between the mouth-arms. The distinction appears to me to be too slight for generic, although important for specific, differentiation.

Mastigias (?) rosea Vanhöffen.

Disk flat and hat-shaped, short, deep radial furrows on the exumbrella surface between he lappets; 56 to 64 (?) small, elongate, marginal lappets, all of the same size and shape 8 separate mouth-a rms, hardly as long as the bell-radius; upper part of each arm cylindrical,
lower half pyramidal and 3 -winged, one wing centripetal, the other two centrifugal; outer surfaces of all 3 wings covered with deep furrows which are complexly folded and contain the frilled mouths. A club-shaped, gelatinous appendage arises from the free lower end of each arm and numerous other appendages spring from the sides of the arms between the furrows. No scapulets. 4 horseshoe-shaped gonads.

The bell-margin and frills of the mouth-arms are deep rose color, while the gonads are paler. This species is found (i) A tropical Atlantic.
Se des for we the form is greatly

Genus PSEUDORHIZA von Lendenfeld, 1882 .

 tion
Mororhiza, Pna Len. fur Naurw, Bd. 20, p. 64
The type species is Pseudorhiza aurosa von Lendenfeld, of Victoria and South Australia.

generic characters.

Rhizostomata triptera with eight 3-leaved mouth-arms, one or all of which terminates in a single large club. No other clubs or filaments among the mouths. 8 rhopalia. 16 radialcanals, 8 rhopalar and 8 adradial. The rhopalar canals extend to the bell-margin, but the adradial ones only to the ring-canal which connects with all of the 16 radial-canals. On the outer side the ring-canal gives off an anastomosing network, and on its inner side a number of blindly-ending, centripetal vessels which may anastomose. The wide, circular muscle of the subumbrella is only partially interrupted in the radii of the radial-canals. The senseThe central mouth persists at the center of the arm-disk.

Haacke's genus Monorhiza is similar to Pseudorhiza, but in Monorhiza only one moutharm bears a terminal club, whereas all 8 bear each a terminal club in Pseudorhiza. The distinction may be deemed to be of specific rather than of generic value

Peud orsiznating it by the older name Mastigias. In Mastigias however the two genera clubs or filaments arising from the sides of the mouth-arms between the mouths, and these are wholly absent in Pseudorhiza; also in Mastigias the inter-rhopalar canals which arise from the inner side of the ring-canal connect with the stomach, whereas in Pseudorhiza they end blindly. These blindly-ending, centripetal canals on the inner side of the ring-canal in $P_{\text {seu }}$ dorhiza may or may not anastomose. They appear not to anastomose in Haacke's P. haeckeliv, but in von Lendenfeld's P. aurosa they are said to form a network; yet von Lendenfeld believe these medusx to be identical, and they are certainly closely related.

The terminal club in all Rhizostomata is merely the naked extension of the axial shaft of the mouth-arm. It is triangular in cross-section as is the arm itself, and the axial duct of mogous with the club-like appendages and

Pseudorhiza aurosa von Lendenfela.

Umbrella 400 mm . wide, flatly rounded, about 130 mm . high. Exumbrella rough and reticulate. 8 marginal sense-organs and in each octant there are 2 long, narrow, pointed, ocular lappets and 6 velar lappets. Each of the velar lobes consists of 3 secondary lappets The arm-disk is about as wide as the radius of the umbrella and gives rise to 8 mouth-arm which are about as long as the diameter of the umbrella. There is a central mouth on th (lower) subumbrella side of the arm-disk and 4 pairs (8) of deep gutters extend out from thi
mouth along the lower side of the 8 mouth-arms. These arms are 3 -leaved and the free edges of these leaf-like expansions branch profusely and complexly. The 8 club-shaped axial appendages whisk.

The 4 subgenital ostia are somewhat wider than the supports between them. There is a single subgenital cavity. The cruciform, central stomach gives rise to 16 radiating canals, 8 to the sense-organs and 8 to the intermediate positions. These 16 canals are put into connection one with another by a ring-canal. On the outer side of this ring-canal is an ending, centripetal vessels, to between each pair of adjacent radial-canals. 160 blindly-
Umbrella colorless, the valleys of the reticulate elevations of the cxumb
entoderm of gastrovascular cavity brown. Upper parts of mouth-arm grooves rose-colored Arms colorless and transparent. Mouth-frills along the margins of the grooves and distal ends of the long axial mouth-arm clubs rich violet

Found at Port Philip, Victoria, and at Adelaide, South Australia
Described in detail by von Lendenfeld, in Zeit. wissen. Zool. It differs from Haacke's "Monorhiza" in that there are 8 moderately long, mouth-arm filaments, instead of only one very long filament, and the centripetal canals anastomose into a network on the inner side
of the ring-canal instead of remaining separate, as in Haacke's medusa.

Pseudorbiza haeckelii Haacke

Disk hemispherical to hat-shaped, 200 to 250 mm . wide and 50 to 100 mm . high. Exumbrella roughened with polygonal, wart-like reticulations. 4 elongate, wart-like protuberances upon the subumbrella in the 4 interradii beyond the 4 subgenital ostia. 8 marginal sense-organs flanked by I6 short, narrow, sharp-pointed lappets. The 48 velar lappets are
wide, short, and rounded. There are thus 8 marginal sense-organs and 64 lappets. The central mouth opening is 4 -cornered and the central disk gives rise to 4 pairs of laterally compressed 3 -leaved mouth-arms. Each leaf of these mouth-arms gives rise to many flat, fern-like expansions. A single filament, 300 mm . long, arises from the lower end of one of the mouth-arms; it is spindle-shaped and 3 -cornered in cross-section. The 4 subgenital ostia are wider than the gelatinous columns between them. The central stomach is Maltese-cross-shaped and gives rise to 16 canals, 8 extending outward in the radii of the marginal sense-organs, and 8 being adradial. These 8 ocular canals extend outward to the hopalia, but the adradial canals end in the ring-canal near the middle zone of the subumbrella. This ring-canal gives rise in each octant to about 18 narrow, unbranched, non-anastomosing, nastomosing vessels which fuse with the 8 rhopalar radial-canals. The circular muscles of the subumbrella are well-developed over the peripheral half of the under side of the bell and are only partially interrupted in the 8 principal radii

The gonads form $4 U$-shaped walls of the subgenital porticus and are much folded. The astric filaments are so inconspicuous that Haacke failed to find them, although according to on Lendenfeld they are present. Like Chrysaora, Pseudorhiza haeckelil is hermaphroditic, for in addition to the central gonads there are sporadic spermaries situated in root-like entoermal flaments in the "gutters" or food crevices of the mouth-arms

The furrowed network of the exumbrella is violet-brown and the entoderm of the gutters of the mouth-arms dark-red. The large filament glistens in metallic copper-color, and in
young specimens it is blue-violet at the base, with a dark-colored, blue and red, spiral, entodermal band of color extending throughout its central cavity. The peripheral canal-system of the subumbrella is brownish-red.

Found in the Gulf of St. Vincent, South Australia, and described in detail by Haacke, 887. Von Lendenfeld regards this medusa as being identical with, or only a variety of, his seudorhiza aurosa.

Genus Phyllorhiza L. Agassiz, 186

 Denfrid, 1884,
Heft. 3 , p. 4 I .
Phyllorhiza chinensis L. Agassiz̀ and P. trifolium Haeckel are too imperfectly described to be recognizable, and P. punctata von Lendenfeld, from Australia, is the type species an the only a dequately determined form.

Phyllorhiza chinensis is probably Cephea cephea, and P. trifolium is, according to Haeckel described from a preserved and mutilated specimen. It has 96 marginal lappets. Exumbrella with 24 long and numerous, short filaments, the largest being equal to the bell-diameter. Bell 75 mm. wide. Japanese Sea.
generic characters.
Similar to the closely allied Lychnorhiza but the centripetal vessels which arise from the inner side of the ring-canal join with the central stomach, as in Mastigias, instead of ending principal radii. The canal-system resembles that of Mastigias, but the mouth-arms have no terminal clubs.

Phyllorhiza punctata von Lendenfeld

Umbrella somewhat flatter than a hemisphere, 500 mm . wide. Exumbrella 50 mm thick, with a finely granular surface. 8 marginal sense-organs. In each octant there are 2 sickle-shaped ocular lappets, 4 simple lappets near the ocular lappets, and 4 double lappets double-lappet as two. The large, double lappets are partially fused by a basal web, and the ocular lappets are only half as wide as the others and are sharp-pointed, while the others are rounded. Radial furrows extend centripetally over the exumbrella between the lappets. The arm-disk is thick and a little wider than the bell-radius, octagonal in shape and has a canalsystem of its own. It is thickly beset with filaments on its ventral side, to which young embryos in the gastrula stage adhere. The 4 subgenital ostia are oval and more than twice as wide a the pillars between them. The eight 3 -leaved mouth-arms are two-thirds as long as diameter of umbrella. Their 3 mouth-bearing edges branch pinnately, but the pinnæ are only rudimentary. The lower parts of the mouth-arms bear numerous, tapering, bluntly-ending filaments, some of wheles of the subumbella are interrupted in the 8 principal radii

8 radial-canals, 4 perradial and 4 interradial, arise from the cruciform, central stomach and extend to the 8 marginal sense-clubs. A wide ring-canal, at some distance inward from the margin, connects all 8 radial-canals. On its outer side the ring-canal gives rise to a fine meshed network of vessels (which fuse also with the radial-canals) extending into the lappet zone. On its inner side the ring-canal also gives off a similar network of vessels which connect with the central stomach and with the 4 interradial, but not with the 4 perradial, canals The arm-disk, main stems, branches of the mouth-arms, and gelatinous substance of the umbrella are colorless. In the gelatinous-substance of the umbrella, close to the surface, in the gelatinous substance, close to the surface of the exumbrella there are cloud-like masse of minute highly refractive bodies which give the medusa a spotted appearance, the spots being whitish. The frilled mouths are brown and the filaments colorless.
This medusa is found in Port Jackson, New South. Wales, Australia, and is described in elaborate detail by von Lendenfeld (Zeit. für wissen. Zool.). He finds that during develop ment the marginal sense-organs decrease from 24 to 16 , and finally to 8
When the medusa is 15 mm . wide there are 24 marginal sense-organs and 48 margina lappets. The 2 ocular lappets of each octant are sharp-pointed, narrow, and elongate, while
the 4 intermediate marginal lappets are broad and bluntly rounded. The 2 intermediat sense-organs of each octant lie in the clefts of the 2 lappets on both sides of the central fissure of each octant.
When the medusx are about 30 mm . wide the 16 intermediate sense-organs disappear and a new set of 8 sense-organs develops in the middle cleft of each octant. The medus now has 64 lappets and 16 marginal sense-organs. The 2 lappets on both sides of the 8 vela sense-organs are now double and finally divide completely. When 50 mm . wide the medus 80 marginal lappets. von Lendenfeld's observations of this remarkable process of development await confirmation.

Genus VERSURA Haeckel, 1880

 Crossostoma, AGAssiz
in, pp. $54,8 \mathrm{x}$

The older species are inadequately described and we may designate V. palmata Haeckel, from the Malay Archipelago, as the type of the genus.

generic characters

Rhizostomata triptera with clubs and filaments upon the mouth-arms. The 4 perradial canals arise directly from the stomach, but the 4 interradial canals result from the fusion of a number of anastomosing vessels which anise from the interradial sides of the stomach. There muscles in the subumbrella, but the ring-muscles are well-developed.

Among characters of minor importance, the subgenital ostia are wide openings, wider than the columns between them, and the sense-organs have a simple, exumbrella pit without radiating furrows. At the center of the arm-disk is a prominent, raised cluster of frilled mouths having filaments between them.

The older species are so imperfectly described that it will be hopeless to attempt to determine them and they had best be omitted from further consideration. For example stylus, and "C. frondifera" may be a Cassiopea (see Haeckel, Syst. der Medusen, pp, 608 , 609).

ersura palmata Haeckel.

 ${ }_{15}, \mathrm{p}, 253$.
Bell flat, shield-shaped, 60 mm . in diameter, 20 mm . high. 8 rhopalia set within very shallow niches in the bell-margin. Ocular lappets very small and sharply pointed; the velar lappets vary greatly in number, ranging from about 4 double ones to 12 in each octant. They thirds as wide as bell-radius; the 4 subgenital ostia are twice as wide as the perradial column between them. There is a unitary, narrow, cruciform subgenital cavity. The 8 mouth-arm are somewhat shorter than the bell-radius. The simple upper axial shaft of each arm is not quite half as long as the 3 -winged lower part, which is Y-shaped in cross-section and nearly as wide as long. The free edges of the Y are complexly branched and folded and bear the frilled mouths. Each lamella of the mouth-arm displays 6 to 7 very deep clefts. There ar numerous, small, club-shaped vesicles scattered among the mouths and a terminal club The central stomach is

The central stomach is Maltese-cross-shaped. Canal-system of bell (?) There is a Centripetal to this zone is another radii, the fibers of which are bowed outward toward the areas of interruption. Color (?)

Haeckel records this medusa from the Malay Archipelago, and Goette studied specimen from Zanzibar, Singapore, and Nagasaki, Japan. It is distinguished only by its indistinct velar lappets and the terminal club of its mouth-arms

Cersura vesicata, HaEcrix, 8880 , Syst. der Medusen, p. 645 .

This is very briefly mentioned by Haeckel. It is closely related to, if not identical with, . palmata, but has twice as many velar lappets. The ocular clefts in the margin are deep lub at the end of each arm is larger than in V. palmata, being one-fourth as long as the bellradius. Northwestern coast (?) of Australia. Size, etc. (?)

Versura pinnata Haeckel.

ersura pinnata, Hafcril, I880, Syst. der Medusen, p. 6

This Cocos Island medusa is very briefly described by Haeckel. Bell flat, 80 mm . wide. 8 deeply-cleft rhopalar niches. 144 lappets. In each octant 16 indistinct quadratic velar, between 12 small, pointed, ocular lappets. Subgenital ostia as wide as the columns between identical with V. palmata, being described only from a preserved and presumably contracted specimen.

Versura anadyomene.

Bell about 200 mm . in diameter and quite flat. Exumbrella covered with a network of anastomosing furrows, leaving polygonal elevations between them. This network is wide at the center and finer-meshed at the margin, and the general trend of the furrows is mainly outward from the center. Gelatinous substance of bell very thin, being only a few millimeters hick even at center. The canal-system can be seen by looking through the bell from the exumbrella side. There are 8 marginal sense-organs, 4 perradial and 4 interradial. These are small and probably lack ocelli, and on the exumbrella side above each sense-organ there is a small, simple sensory pit without radiating furrows. The 16 ocular lappets which flank the 8 marginal sense-organs are small and lanceolate. 8 large, semicircular velar lappets, which alternate somewhat irregularly with about 8 mall, narrow, tongue-shaped lappets. The arm-disk is rectangular to cruciform, with long interradial slit-like, subgenital ostia and 4 narrow, perradial pillars between them. The subgenital sinus is a flat, narrow, cruciform space and the genital cross is very narrow. The medusa is very delicately formed, the lower parts of the mouth-arms being thin and leaf-like.

Each of the 8 mouth-arms is about as long as the bell-radius and very strongly compressed aterally. The upper part of the arm has the form of a knife blade, the sharp edge being nwards (axial) and the thick, rounded side being abaxial. Two rhomboidal, expanded, leaf-like wings arise from the abaxial side of each arm. The lower sides of the two lateral wings and the inner (axial) part of each arm gives rise to numerous, flat, membranous side club-shaped vesicles arise from between the mouths of the two lateral, abaxial wings of each mouth-arm, while the ventral side of each mouth-arm gives rise solely to tapering filaments between the mouths. The rows of frilled mouths on the inner (axial) sides of the mouth-arms extend to the center of the arm-disk, where they form a projecting rosecte.

A main canal arises from each of the 4 perradial corners of the stomach and sends branches into the mouth-arms. It is remarkable that each of the lateral, abaxial wings of the lower arms contain 2 separate axial-canals, each of which sends off side branches to the mouths. These side branches do not anastomose and thus there is a double canal-system in each of he lateral wings of the lower arms.

The central stomach is cruciform, the arms of the cross being perradial. 4 perradial canals extend . The 4 canals to the the 4 angles of the central stomach to the 4 perradial stomach, but from 4 areas of anastomosing vessels which form a network on the interradial sides of the central stomach. These network-like areas of vessels arise in numerous canals from the entire interradial sides of the stomach. They send out a few branches which join
the 4 perradial canals. There is no true ring-canal, although all 8 of the radial-canals are placed in communication one with another by a marginal zone of anastomosing vessels which extend into the lappets. There are no radial-muscles in the subumbrella, but there are 2 separate concentric ring-muscles, which are further divided into 8 sectors, the lines of separation being in the radii of the 8 radial-canals. The outer zone of ring-muscles lies close to the bases of the marginal lappets. The inner zone is not a true circle but is widest in the 4 interradii This medusa is described by Maas from a single specimen found in the Malay Archi pelago by the Siboga expedition. It may be identical with the Versura briefly described by Goette, 1886 (Sitzungsber. Akad. Wissen. Berlin, Jahrg. 1886, p. 837), from the east coast of Africa. Maas gives a detailed description of the medusa. The species is distinguished by its prominent velar lappets, its very thin, delicately formed bell and mouth-arms, and the furrowed surface of its exumbrella

Versura maasi, sp. nov.
Named in honor of Prof. Dr. Otto Maas in recognition of his notable researches upon medusx.

Bell 90 mm . wide, flatter than a hemisphere and evenly rounded. Exumbrella finely granular, without furrows. Gelatinous substance fairly thick but not very rigid. 8 rhopalia

The 16 rhopalar lappets are only slightly narrower than the velar lappets. There are usuall arm-disk is five-ninths as wide as the bell-diameter in the perradius where it arises from the subumbrella, but is only one-fourth as wide as the bell-diameter at the level of the origin of the 8 mouth-arms. The 4 interradial subgenital ostia are twice as wide as the perradial arm-dis columns. There is a wide unitary subgenital porticus. The 8 mouth-arms are each onethird as wide as the bell-diameter. The 3 -winged lower part of each arm is somewhat more than twice as long as the unbranched proximal shaft of the arm. The 2 lateral, outer wing of each arm are deeply cleft (fig. 416, c). There are a very few, small, club-like appendage (fig. B) among the mouths of the mouth-arms, but the center of the mouth-arm disk bear a great number of clubs. These clubs are laterally flattened,the largest being only 10 mm long and besprinkled with nematocyst-bearing warts which are especially numerous upon
their outer ends. The mouth-arms are strongly compressed laterally, being only 3 mm . in circumferential and II mm. in radial width at their points of origin from the mouth-arm disk. A single duct extends into each mouth-arm, but this soon sends off a pair of side branches to the lateral wings, and a pair of secondary bry
main shaft of the mouth-arm (fig. $4 \mathrm{I} 6, \mathrm{c}$.

There are 8 wide rhopalar canals of which the 4 perradial ones arise directly from the stomach, but the 4 interradial arise from the confluence of a pair of forks. 7 to 9 narrow vessels arise from each inter-rhopalar octant of the stomach and extend outward toward the bell-margin, giving off numerous, anastomosing side branches which form a network connect-
ing all the canals. There is no defnite ring-canal. ing all the canals. There is no definite ring-canal.

Near the bell-margin there is a sharp, angular bend in the subumbrella surface so that the outer annulus of the subumbrella extends downward vertically and at right angles with
the inner zone of the subumbrella. There is a wide annulus of circular muscles in the sub umbrella. These muscle-fibers are unbroken but somewhat thinned in the 8 rhopalar radii, and the muscular-zone is wider in the interradii than in the perradii, but does not extend to the edges of the arm-disk.

In formalin the rhopalar radial-canals and the proximal parts of all other canals adjacent to the stomach are bluish-purple. The mouth frills are brownish to brownish-purple. The bell is milky and the muscles and gonads dull brownish-yellow
ect specimen was obtained by the U. S. Fisheries Bureau steamer Albatros on April 8, 1908, along the shore at Mantocao Island, west coast of Bohol, Philippine Islands.

Frc. 4x7. -Lobonema smithizi, Drawn by the author, from a preserved specimen.
View of subumbella. Muscular system shown on right and vascular system on left.

Genus Lobonema, gen. nov

The type species and only known form is Lobonema smithii from Manila Bay, Philippine Islands.

generic characters.

Rhizostomata triptera in which the marginal lappets are greatly extended, tapering to pointed ends. Mouth-arms with numerous filaments. Mouth-arm membranes perforated
by window-like openings. 8 rhopalia, 16 radial-canals, and a ring-canal which gives off anastomosing vessels on both its inner and outer sides. The inner network does not connect
with the stomach. The subumbrella exhibits a well-developed system of entire ring muscles There are numerous prominent, tapering, nematocyst-bearing papillæ upon the exumbrella side above each rhopalium and the floor of this pit is furrowed.

Lobonema smithii, gen. et sp. nov,

This species is named in honor of Dr. Hugh M. Smith, Deputy United States Fish Com missioner, who found it in Manila Bay, Philipine Islands. The Albatross found a perfec specimen of this medusa, and a quadrant of its disk and all of its mouth-arms were preserved. There were also two other imperfect specimens, so that all three taken together afford data for a partial description of the medusa

Bell flatter than a hemisphere, 236 mm . across from each sense-club to the one 180° from it Gelatinous substance thick, tough, and rigid. Exumbrella regularly besprinkled with erect gelatinous papill which are largest and most abundant at the center of the exumbrella but dis-
appear near the margin and are not seen over the lappets. Near the center of the exumbrella these papillæ are about 6 to 10 mm . apart and each is about 35 to 40 mm . long and 3 to 5 mm wide at the base; they are conical, usually more or less curved, and taper to pointed ends Their surfaces are thickly covered with nematocysts, which give a bristling appearance to the disk of the medusa. 8 rhopalia which lack ocelli in specimens preserved in formalin or alcohol On the exumbrella side above each sense-club there is a shallow, heart-shaped, sensory pit with dendritic ridges over its floor. The rhopalia are flanked by very small, oval, ocular lappets ordinary, each being 90 to 100 mm . long and tapering gradually from base to tip. They are modified so as to resemble superficially tentacles of semæostomous Scyphomedusæ and trail downward from bell-margin, waving flexibly to and fro as do veritable tentacles; I can find no muscles in these lappets, however, and do not believe that they can contract and elongate There are deep clefts in the exumbrella surface between the lappets, but these clefis are bridged over by a thin subumbrella membrane spanning between the lappets. The 8 inter-rhopalar grooves are 35 mm ., the 8 rhopalar 16 mm . and the 16 intermediate clefts 31 mm . long. The 8 rhopalar clefts are λ shaped and the exumbrella sensory pit is at the middle of the crotch of the λ with the divided groove on either side of it (see text-figure $418, \mathrm{c}$). The grooves between thal-canals 8 rhopalar and 8 inter-rhopalar, leave the
the bell-margin. There is a fairly distinct ring-canal about central stomach and all extend clubs, and this ring-canal gives rise on both its inner and outer sides to an anastomosing network of vessels which connect with the 16 radial-canals, but not directly with the stomach. This network of vessels extends downward throughout the length of the tapering lappets trending mainly longitudinally but with frequent anastomoses.

The muscular system forms an annulus about 68 mm . wide in the subumbrella from the margin of the arm-disk to the zone of the rhopalia. The circular muscles are powerfull developed, and are only thinned but not broken in the rhopalar radii. There are no radial muscles and no muscles in the lappets.

The the size or form of the subut as it was can make no statements in ref erence to the size or form of the subgenital ostia or of the gonads.
The 8 mouth-arms are separate, 150 mm . long, and each is 3 -winged below. The upper each of the arm is 60 mm . and the 3 -winged lower part 90 mm . long. It is remarkable that text-figure 418). The axial duct of the arm extends down the center and gives off side branches in the tissue between the windows to the mouths. These side branches are joined one to another by longitudinal canals near the frilled mouths (see text-figure 418 , B).

There are numerous appendages upon the mouth-arms arising between the mouths triangular in cross-section and taper to pointed ends. Those arising higher up are more slender, and above these there are mere thread-like filaments. The appendages are usually 70 to 100 mm . long, and the large ones contain an axial duct. The general color of the medusa in formalin is milky-gray. The mouths and gonads being darker than other parts.

The U. S. Fisheries Bureau steamer Albatross found this medusa in Manila Bay at the ship's anchorage on April 25, 1008, and again at station D, 5222, between Marinduque an Luzon, 9 miles off San Andreas Island, on the surface on April 24, Ig08.

Dr. Hugh M. Smith tells me that this medusa inflicts a very severe sting upon persons who
位

Fis. 418 - Lobonema smithiz. Drawn by the author, from a preserved specimen.
A, diagrammatic illustration of one of the mouth-arms, to show the wind side walls of arms. B, side view of a mouth, -arm, showing canal-system (dotied).
C, rhoplium and one the marginal lobes. side walls of arms. B, side view of a mouth.
C, rhopalium and one of the marginal lobes.
in Manila Bay whose cases were reported upon by Edward H. H. Old, Asst. Surgeon, U. S. Navy. One of these cases proved fatal, and they all occurred during the summer months of 1906-07. The skin where the sting occurs becomes red and vesiculated and "weeps" as does an eczema. Soon general pains develop throughout the body, especially in the lumbar region.

The mucous membranes give rise to a thin copious secretion. The patient becomes hysterical, coughs almost incessantly and throws himself about the bed, nauseated, weeping, and with an anxious congested face. The pulse becomes rapid and some degree of fever usually develops. The general symptoms develop in from 10 to 15 minutes after the infliction of the sting. The most efficient remedy was found to be a hypodermic injection of one-sixth to oneas bicarbonate of soda. A report upon these cases is presented by Dr. Old in the Philippine Journal of Science, vol. 3, p. 329, Igo8.

RHIZOSTOMATA LORIFERA Vanhöffen.

 Leptobrachide, Claus, 8883 , Organisation und Entwick. Medusen, Leipzig.--von LeNDenfeld, 1888 , Zeit. für wissen. Zool., Bd. 47, P. 2xI.-MAAs, y906, Revue suisse de Zool., tome 14, P. 104.

characters of the group.

Rhizostomæ with very elongate, narrow, lash-like mouth-arms. The lower parts of the arms are 3 -winged in cross-section, the mouths being developed upon and near the angles.
 The upper parts of the mouth-arms are very short and paing arm to another. The ring-muscles of the subumbrella are powerfully and the radial muscles weakly developed.

- The Rhizostomata lorifera are only a subordinate group of the Rhizostomata triptera from which they have been derived by the elongation of the mouth-arms and the reduction of the lateral
expansions of the arms. A description of the genera follows:
devoid of mouths in the mid-regions of their lengths.

Genus THYSANOSTOMA L. Agassiz, 1862

Fic. 4I9.-Diagrammatic representation of the form and posstion
of the mout-arss in the Rhi-

$$
\begin{aligned}
& \begin{array}{l}
\text { Thysanostima L. LCAssizz, } 1862 \text {. Mouth-arms without terminal clubs. } 3 \text { rows } \\
\text { of friled mouths extend down the angles throughout the entire length of }
\end{array} \\
& \begin{array}{l}
\text { of friled mouth } \\
\text { the lower arm. }
\end{array} \\
& \text { Lorifera Hafcrer, } 1880 \text {. Similar to Thysanostoma but with a naked knob }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Aptobrachia BRANDT, } 1888=\text { Leptobrachia- Leonura } \text { Harcxrz. Mouths confines } \\
\text { to the lower and upper ends of the mouth-arms, so that the mouth-arms are }
\end{array}
\end{aligned}
$$

The type species is \mathcal{T} hysanostoma thysanura from the Indo-Pacific region. It is possible that Lesson's inadequately described Rhizostoma brachyura may be the same medusa.

GENERIC Characters.

Rhizostomata lorifera having mouth-arms bearing 3 rows of frilled mouths from base to lower end without a terminal club.

Among characters of minor importance, the 4 interradial, subgenital ostia are wider than the perradial columns between them. There are 8 rhopalar canals, and a ring-canal which gives off a network of vessels on both its inner and outer sides. This network connects with all the radial-canals and also at numerous points with the central stomach. The well-developed circular muscles are only partially interrupted in the 8 principal radii. There is a small, shallow, exumbrella pit above each sense-organ, without furrows in the floor of the pit.

The only difference between this genus and the closely allied Lorifera is that the frilled mouths are developed even to the tips of the lower ends of ther

Thysanostoma thysanura Haeckel.

(?) Rhizostoma bracchyura, LEsson, R. P., 8829 , Voyage de la Coquille, Zoophyt., tome 2, P. 153; 1830, Centurie Zoologique, p. 227, planche 8o,
Chysanoscomma thysanura,

The bell is 90 to 120 mm . wide. The exumbrella exhibits polygonal facets or granular flatter than a hemisphere, recalling the appearance of a shield. There are 8 marginal sense-

organs which are flanked by 16 small, pointed lappets and between each successive pair of sense-organs are 6 to 12 bluntly rhomboidal lappets which are very variable in size even in different parts of the same octant. The sense-clubs have a pigmented mass of lithocysts and there is a very small, shallow, simple, exumbrella pit.

The 8 mouth-arms are each about 1.5 to 3 times as long as the bell-diameter; upper arn only about one-twelfth as long as the lower arm. Lower arm delicately formed, 3 -winged and Y-shaped or T-shaped in cross-section throughout its length; in its upper part it tapers

RHZZOSTOME-THYSANOSTOMA, LORIFERA
slightly and then continues throughout the greater part of its length of nearly uniform width, ending in a blunt, distal extremity, covered with frilled mouths. The wings are thin, longitudinal lamellæ, one being inward (axial) and two flaring outward (lateral). The 2 lateral wings give rise each to short, small, secondary wings near their upper, outermost end. In the upper third of the lower arm the frilled mouths are developed upon the outer sides as well as along the edges of the 3 wings. In the middle third they are confined to the edges of the 3 wings; and in the lower (distal) third, they are developed upon the sides and edges as in the mouths recall the condition seen in the mouth-arms of Mastigias and Crambione. There are neither terminal knobs nor other appendages upon the mouth-arms, but there are numerous short, slender, filiform, tubular appendages upon the arm-disk.

The arm-disk is quadrangular with rounded angles, with its sides about three-eighths as long as the bell-diameter. The subgenital ostia are large and gaping, 4 times as wide as the perradial columns of the disk, and are not narrowed by median flaps. There is a single, large, but low, subgenital porticus.
There are only ring-muscles in the subumbrella. These are strongest near the margin and the muscle-mass is widest in the 4 interradii. The muscles are only partially interconsiderable width of the 8 rhopalar canals, which are somewhat wider than the others. The ring-canal is at some distance inward from the bell-margin and the anastomozing network of vessels extends on both sides of the ring-canal, fusing with the 8 radial-canals and with the central stomach. 4 canals arise from the perradial sides of the cruciform stomach and extend downward through the 4 pillars into the arm-disk. Here each canal divides into 4 branches, 2 horizontal ones leading into the center of the arm-disk and 2 vertical leading down into 2 of the oral arms. Each arm-canal gives off 3 side branches which together with the axial-canal extend down the mouth-arms, the side branches giving off branchlets to the 3 rows of mouths This medusa is found in the Malay Archipelago, from Amboina, Philippines, and Moluccas to Japan. It is described in detail by Haeckel, L. S. Schultze, and Kishinouye. The umbrella flesh-colored. Gonads and mouth russet or hazel-brown. Mouth-arms and armdisk violet.

Kishinouye's Thysanostoma denscrispum, from Japan, is, I believe, only the young of T. thysanura. Lesson's Rhizostoma brachyura, from New Guinea, has a whitish bell with rusty-colored margin and yellowish-red mouth-frills, the general color pattern being very similar to that of the more highly colored Japanese medusa.

The dimensions in mm. of a specimen obtained at Mindanao, Philippine Islands, by the U. S. Bureau of Fisheries steamer Albatross are as follows: Bell, roo wide; perradial diameter of arm-disk, 74; diameter of arm-disk at level of origin of mouth-arms, 48 ; genital 8 to 12 velar lappets in exumbrella finely granular.

In another large medusa from Mausalay, Mindoro, Philippine Islands, taken by the Albatross on June 4, igo8, from a depth of 150 feet, the bell is 120 mm . wide and the moutharms 190 long. ln a halfgrown medasa obtained on the surface at the same time and place the bell is 59 mm . wide with finely granular exumbrella. Mouth-arms 67 long. Arm-disk 4 Imm . wide at its origin from the subumbrella and 33 mm . wide at the level of the origins
of the mouth-arms.

Geaus LORIFERA Haeckel, I 880 .

The type species is L. lorifera of the Indo-Pacific region. This genus is distinguished from
the closely allied \mathcal{T} hysanostoma only by the naked, club-shaped extremities of its mouth-arms. The name Himantostoma is preoccupied, having been used by Loew, 1853 , for Diptera
We must therefore use Haeckel's alternative name Lorifera.

Rhizostomata lorifera in which the 8 mouth-arms bear rows of three continuous frilled mouths, but terminate each in a naked knob.

Among characters of minor importance the subgenital ostia are usually wider than the perradial disk-columns. The circular muscles of the subumbrella are practically entire. The ense-clubs have each an ocellus and a well-developed, exumbrella pit with radiating furrows. All the species are from the Indo-Pacific region.
$T_{\text {abular Description of the Species of Lorifera. }}$

	H. lorifera:	H. fagellata:
Diameter of bell in mm .	I50 to 160. Exumberla smooth.	200. Exumbrella granular.
Number of velar lappets in each octant.	6 double.	8 rounded.
Length of mouth-arms in terms of bellradius (r).	3 to 4 r	$2+$
Length of terminal knob in terms of length of mouth-arms.	One-sixtieth; a very small, swollen, oval bulb.	Two-thirds; slender and tapering.
Color.	Bell amethyst. Margin white with darkviolet spots. Mouths dark-violet.	?
Where found.	Red Sea to Pacific Ocean.	Malay Archipelago to Hawaiian Islands.

Lorifera lorifera Haeckel.

Bell I 50 to 160 mm . wide with very thin walls and smooth exumbrella surface. 8 rhopalia. 64 marginal lappets. In each octant 6 short, wide, bluntly-rounded, double, velar lappets between 2 rudimentary, oval, ocular lappets. The 4 -sided arm-disk is somewhat wider than the bell-radius. The 4 subgenital ostia are 3 to 4 times as wide as the perradial columns between them. There is a narrow, cruciform, subgenital cavity. The 8 long, tapering, whiplike mouth-arms are twice as long as the bell-diameter. Near the arm-disk they are only 5 to
6 mm . wide and taper outwardly, being only 2 to 3 mm . at their ends where they terminate 6 mm . wide and taper outwardly, being only 2 to 3 mm . at their ends where they terminate in a naked, oval knob 5 to 6 mm . long. A ventral and dorsal row of complexly folded, frilled mouths is found in the upper half of each mouth-arm, and thus the upper half angles. The ventral (inner) ridge of mouths disappears about the middle of each arm, the lower halves of the arms being thus ribbon-like with only the 2 lateral rows of mouth-frills persisting to the base of the terminal knob. Neither clubs nor filaments between the mouths. There is a wide unitary zone of circular muscles in the subumbrella and apparently no radiating muscle-fibers.

Stomach cruciform, the 4 perradial oral rays of the cross being 60 mm . long and twice as wide (30 mm .) in their outer half as they are near the center of the bell. 8 rhopalar radialcanals arise from the stomach and extend to the marginal sense-organs. These 8 canals are put into connection one with another by a ring-canal at some distance inward from the margin. On its outer side the ring-canal gives off a network of vessels which fuse with the ropalar adial canals and with the central stomach. There are traces of 8 narrow, adradial canals in the network.
The bell is amethyst-color with a white margin and with a dark-violet spot upon each lappet. The frills of the mouths are dark-violet and the gonads reddish-yellow.

Found at Tur, near Saini, Red Sea, in November.
This medusa may be identical with Agassiz's "Himantostoma sueurii" from the China Sea; but in this form there are only 5 velar lappets in each octant instead of 6 as in L. lorifera.

This variety is described by Schultze from Ternate and from Amboina, Malay Archipelago.
Bell flatly rounded, 200 mm . wide and 50 to 60 mm . high. 8 marginal sense-organs. 64 marginal lappets; each octant has 2 sharp-pointed rhopalar lappets and 6 velar lappets separated one from another by long, deep furrows; the outer edges of these velar lappets are rounded and each lappet usually displays a median cleft, as in L. lorifera, or is even further divided; outer edges of velar lappets evenly rounded. The 4 subgenital ostia are 3 to as diameter of disk. Thus in a medusa 200 mm . in diameter the arms are each 290 mm . long. The simple upper arm is only 10 mm . long; below this each arm expands into a 3 -winged appendage, with two outer and one inner wing. This 3 -winged part of mouth-arm is very appendage, with and extends below in a very long, slender, 3 -sided lash, the angles of which bear frilled mouths. This lash terminates below in a small, vesicular, naked knob. The gastric canal which enters each lower mouth-arm sends out a longitudinal branch into each of the 2 dorsal wings. These branches are put into communication with the central canal of the arm by frequent cross-branches, and the side branches into the mouth-grooves often anastomose.

In the middle of the bell is a dark blue-violet area. Near the bell-margin the color is
ornish or white. The marginal lappets are violet. The smooth, outer side of the upper arm is transparent. The thick proximal parts f the lower arms are light-brown in their basal parts but throughout the greater portion of their lengths they are violet.

This "variety" is probably identical with Haeckel's L. lorifera from the Red Sea. The slight differences mentioned by Schultze may readily be due to individual variation. For example, in the medusa from the Malay Archipelago the lower side of the arm-disk along the lines of the 8 axial rows of mouth-openings is beset with a felt-like mass of long, thin filaments. These are absent, however, in Haeckel's medusa from the Red Sea. Schultze has seen Haeckel's original specimen in Berlin and finds that it is a male, whereas the medusa from the Malay Archipelago is a female. It is possible, therefore, that this difference in the condition of the lower surface of the arm-disk may be sexual

Lorifera flagellata.

Himantosomana fagell lata, HAscrist, r880, Syst. der Medusen, p. 629.-MAAs, 1903, Scyphomedusen der Siboga Expedition,
The bell is flatly rounded and may be 200 mm . in width. The gelatinous substance is thick, tough, and of a porcelain-like whiteness. The exumbrella bears fine granulations, and near the margin are light-brown punctations, especially numerous over the marginal lappets, where they are rendered especially conspicuous owing to the white color of the underlying gelatinous substance.

There are 8 marginal sense-clubs each with a large swollen end containing a concretion and a pigment-spot of horseshoe shape. The covering scale over each sense-club is wider than it is long, and there is a well-developed sensory pit upon the exumbrella side. The bottom of this pit exhibits radiating furrows. The 8 sense-clubs are flanked by 16 short, pointed, ocular lappets, and between each successive pair of sense-organs are typically 8 rge, rounded, velar lappets. Thus there are in all 80 marginal lappets.
the pillars between them. These pillars of the arm-disk are peculiar nearly twice as wide origin from the subumbrella each pillar is divided so that 2 arches of gelatinous substance origin from the subumbrella each pillar is divided so that 2 arches of gelatinous substance
extend downward to the base of the upper arm. Spanning these arches is a well-developed, gelatinous membrane which also spans the 4 interradial spaces between the arm-disk-pillars and overlaps the 4 subgenital ostia. This peculiar arrangement is well described by L.S. Schultz, r898, in L. lorifera var. pacifica (see Denkschr. Med. Nat. Gesell., Jena, Bd. 8 , p. 447). The arches and the cross-spanning membrane extend so far down the length of the upper arm that only a small portion of the latter is free.

The 8 mouth-arms when contracted are hardly longer than the bell-diameter. The lower arms are free and taper to their pointed lower ends. They are about 6 times as long as the upper arms. At the upper end of each of these lower arms there are 2 abaxial wings so that the arm is here 3 -winged in cross-section and the frilled mouths are developed only along the thin edges of the 3 membranous wings. The main shaft of the lower arm is, however, angular edges of the arm. Each lower arm terminates at its pointed lower end in a long, tapering filament which is about two-thirds as long as the lower arm itself. Numerous, short, slender filaments arise from between the mouths, especially along the lines of the angular edges of the lower arm. There are no club-shaped appendages.

Stomach cruciform, the arms of the cross wide and not quite as long as the center, wherein the arms come together. Thus the stomach is relatively wider than in other species of Lorifera. The canal-system of the bell consists of 8 canals in the radii of the sense-organs, which are put into communication one with another by a network of anastomosing vessels which arise not only from the 8 radial-canals but from the edges of the stomach. There is no clearly developed ring-canal and it is difficult to determine the number of canals which
arise from the stomach between each successive pair of rhopalar canals. There is a very wide zone of circular muscle-fibers in the subumbrella. This muscle is only somewhat thinned but not actually interrupted in the 8 principal radii. The 4 gonads are horseshoe-shaped and complexly folded. This medusa is found at the Hawaiian Islands and in the Malay Archipelago. In a small specimen found by the U. S. Fisheries Bureau steamer Albatross at station D 5226 , in the Philippine Islands on May 4, 1908, the bell is 50 mm . wide and mouth-arms 56 mm . long, the slender, tapering filaments at the ends of the arms being 18 mm . and the mouth-bearing parts of the arms 38 mm . long

Genus Leptobrachia brandt, 1838 .

generic characters.

Rhizostomata lorifera in which the long, linear mouth-arms bear no frilled mouths near the middle of their lengths; but near their points of origin from the arm-disk there is a ventral row of mouths, and below the naked mid-region there are 3 lines of mouths, I ventral and 2 dorsal. The mouth-arms terminate below in a naked pointed end, free of mouths.

Among characters of minor importance, the slit-like subgenital ostia are wider than the columns between them. I6 radial-canals extend to the bell-margin and a well-developed
ring-canal gives off a network of vessels on both its inner and outer sides; these networks ring-canal gives off a network of vessels on both its inner and outer sides, these nethe the radial-canals. A unitary, circular muscle is in the marginal zone of the subumbrella.

Leptobrachia leptopus Brandt.
Rhizostoma leptopus, Chamisso et Eyssnatardr, r821, Nota Acta Phys. Med. Nature Curios, tome ro, P. 356 , taf, 27, fign. I,
 Leonura terminalis, HAxcker, E., 1880, Syst. der Medusen, p. 646; 1888, , Deep-sea Meduse Challenger Expedition, Zool., vol. 4,

The following description is derived from Haeckel's account of his "Leonura terminalis" which is only a modern name for Brandt's Leptobrachia leptopus = Rhizostoma leptopus Chamisso and Eysenhardt.

Bell flatter than a hemisphere, 80 mm . wide. Exumbrella covered with regularly arranged, polygonal elevations bordered by furrows. 8 rhopalia. 80 marginal lappets. All of the lappets are sharply pointed and are largest at the middle of each octant, the smallest being
adjacent to the rhopalia, the lappets increasing successively in size and being largest midway
between the rhopalia. Converging furrows extend up the sides of the exumbrella from the clefts between the lappets. Arm-disk 4 -sided, rarely as wide as the beli-radius, with subgenital ostia 3 times as wide as the columns between them. A unitary, cruciform, subgenital cavity. The 8 slender mouth-arms are about as long as the bell-diameter. The arms are triangular in cross-section and end below in a triangular, pointed, naked extremity nearly one-fourth as long as the entire arm itself. 8 rows of frilled mouths radiate outward from a raised rosette of frills at the center of the arm-disk and extend down the ventral angle of each mouth-arm and devoid of all mouths for about one-fourth of its lenoth. Below this naked region are double rows of frilled mouths, I on the ventral and 2 on the dorsal angles of the arm covering a length equal to about one-fourth the arm; below this region is the naked terminal club. Thus from base to lower end we find: (1) a length wherein there are only ventral mouths; (2) a midregion devoid of mouths; (3) a part wherein there are 3 double rows of frilled mouths, i ventral, 2 dorsal; (4) the pointed, naked, terminal club. There is a unitary, marginal zone of ringmuscles in the subumbrella.

The cruciform, central stomach gives rise to 16 radial-canals, 4 perradial, 4 interradial, and 8 adradial. All extend to the bell-margin and are connected by the ring-canal at some distance inward from the margin. A network of anastomosing vessels connects the ring-
canal with the radial-canals on the inner side. On its outer side the ring-canal gives off a forked canal into each velar lappet and a network of anastomosing vessels which connects with all of the canals in the lappets. Found by the Challenger expediti South America.

Haeckel's "Leonura leptura," from near New Zealand, is probably another name for L. terminalis. It differs only in having rectangular instead of pointed velar lappets and the mouth-arms are 3 times as long as the bell-diameter, whereas the arms of L. terminalis are said to be only about as long as the diameter of the bell. The "quadratic" marginal lappets of L. "leptura" are probably due to the loss of their originally pointed ends, an accident which
frequently occurs to Scyphomedusæ. frequently occurs to Scyphomedusæ.
same medusa. It is described from the Radack Islands, tropical Pacific. The mouth-arms is described from the Radack Islands, tropical Pacific. The mouth-arms
are not quite twice as long as the bell-diameter, thus resembling

FIG. 42I.-Diagrammatic representation of shape of mouth
Rhizostomata sccppulata.
are not quite twice as
Haeckel's L. terminalis.
The bell is light-violet, the margin and frilled mouths being darker. 32 reddish-violet spots on the exumbrella near the margin. Gonads yellow.

Rhizostomata scapulata Vanhöfen

 Rhizostomata scapulatat, VANHiFFEN, 1888 , Bibliotheca Zoologica, Bd. I, Heft. 3, P.42.-MAAs,

Rhizostomæ in which each of the 8 mouth-arms bears pair of wing-shaped outgrowths, called scapulets, or shoulder ruffles which arise from the dorsal side of each arm near its as upon the lower parts of the mouth-arms. The circular the subumbrella are powerfully and the radial-muscles weakly developed or absent A description of the genera follows:

Razzostoma CUvIRR, 1800.8 free mouth-arms, the lower parts of which are γ-shaped or 3 -winged in cross-section.

Gerus Rhizostoma Cuvier, r790, sens. restr.

The type species is Rhizostoma pulmo of the Mediterranean.

generic characters.

Rhizostomata scapulata with 16 scapulets upon the outer sides of the 8 mouth-arms The 8 mouth-arms are free, not fused together. Lower arms 3 -winged, each terminating in a single, club-like, gelatinous appendage. There are no other clubs, nor filaments among the mouths. The 4 subgenital ostia are narrow cross-slits, each constricted by a wart-like papilla upon the subumbrella. 16 radial canals, 8 rhopalar and 8 adradial, all of which extend to the bell-margin. A network of anastomosing vessels arises from the outer halves of these 1 radial-canals, and the radial-canals. There is no marginal ring-canal, but the most direct and widest connection between the radial-canals is through the middle of the zone of anastomos ing vessels. I6 triangular areas of circular muscle-fibers alternate with the 16 radial-canals. The marginal sense-clubs lack ocelli. There is an exumbrella pit above the sense-club and the botom of this depression is furrowed with radiating ridges.

This genus is distinguished from Eupilema Haeckel by having 8 terminal clubs upon its mouth-arms whereas these are absent in Eupilema. It is distinguished from Rhopilema by

	R. pulmo.	R. lutea.	R. octopus.	R. corona.	R. capensis.
Diameter of bell in mm .	150 to 600	200 to 300	As in R. pulmo.	200 to 400	200 to 300 (?)
Character of exumbrella surface.	Finely granular.	$\underset{\substack{\text { Rough with oral } \\ \text { warts. }}}{ }$	As in R. pulmo.	Smooth (\%)	Smooth or finely granular. granular.
Number of marginal lappets.	80	80	96 to 112	I40 to 880	
Shape of velar lappets.	Semicircular.	Short, oral.	Short, pointed.	Small, truncated.	Semicircular.
Length of upper arm.	Longer than lower arm.	As in R. pulmo.	Shorter than lower arm.	Nearly twice as long as lower arm.	Not as long as lower arm.
Length and shape of terminal club.	Shorter than, or equal to, upper arm. Widest near base. Constricted at base. No basa stalk.	Longer than entire arm. With long slender basal stalk like outer end.	Longer than upper arm with a slender basal stalk and swollen club$\begin{aligned} & \text { swoillen club- } \\ & \text { shaped outer end. }\end{aligned}$.	Somewhat shorter than upper arm. Width nearly uniform throughout. with toothed angle.	Half as long as uppe arm. Pyramidal, 3-cornered with toothed angles and bluntly pointed end.
Color.	Bell milky-yellow, occasionally reddish. Marginal lappets blue or vioer. Mouth-frills brownish-red or violet.	Warts of exumbrella reddishbrown. Frilled mouths yellowish. Terminal club deep purple-brown	As in R. pulmo.	$?$	Bell and clubs bluish. Mouthfrills brownish-red.
Where found.	Mediterranean.	Straits of Gibralter.	Atlantic coasts of Europe, France to Scotland.	Red Sea at Suez and Tur.	Cape of Good Hope, South Africa.
Remarks.		Described in detail by Grenacher and Noll.	Closely related to R. pulmo, but distinguished by its swollen, club-like, ages.	Imperfectly known. Apparently closely related to R. pulmo.	So imperfectly known that it can not be determined.

having but a single filament (a terminal one) on each mouth-arm, while in Rhopilema there are, in addition to the terminal knob, many lateral appendages between the frilled mouths tic coasts of Europe and Africa, and are closely related to R. pulmo of the Mediterranean distinguished one from another only by the relative lengths, and the various shapes of the terminal clubs.

 of Exper. Zool., Balkimore, vol. $\mathrm{I}, \mathrm{p} .73$, fgs. I - 6 (regeneration).

Bell pyriform, somewhat higher than a hemisphere, usually not more than 150 mm . in diameter, though specimens 600 mm . wide may occasionally be found. Surface of exumbrella finely granular, being covered with small nettling-warts. 8 marginal sense-organs, each containing an orange-colored mass of concretions of entodermal origin; no ocellus. Above each sense-organ on the exumbrella side is a wide triangular pit, the bottom of which exhibits
diverging furrows. Each sense-organ is flanked by a pair of narrow, elongate, lanceolate diverging furrows. Each sense-organ is flanked by a pair of narrow, elongate, lanceolate, size and shape in each octant. Thus there are in all 80 marginal lappets (16 rhopalar +6 velar).

The total length of the mouth-arms, including their terminal clubs, is about equal to th bell-diameter. In its upper part the arm-disk is 4 -sided and narrow, but below it widens out, becomes 8 to 16 -sided and gives rise to the 16 (8 pairs) short, simitar-shaped scapulets having fringed mouths upon their upper, convex sides. The 8 mouth-arms are each 3 -winged or Y-shaped in cross-section, two of the wings being directed outward, one being centripetal These wing-like expansions bear numerous mouths, the lips of which are fringed by a row of
short, flexible, knobbed tentacles.
The terminal knobs are triangular in cross-section, somewhat contracted in the middl
their lengths and with a simple, central canal. They are usually a little shorter than the upper arms, but may equal or slightly exceed them in length. The mouth-bearing, lowe arms are somewhat shorter than the free upper arms between the zone of the 16 scapulets and the winged portion of the arms. Ordinarily the scapulets are hidden away under the concavity of the subumbrella. The 4 subgenital pits are narrow, slit-like and with their open ings constricted in the middle by a knob-shaped protuberance upon the floor of the subumbrella. The 4 invaginated, genital sacs are small and separated completely one from another.
The cruciform central stomach gives rise to I6 radiating canals, 8 of which extend to the
nse-organs and 8 are intermediate in position; all reach the bell-margin. A network of anastomosing vessels places the outer halves of the radial-canals in connection one with another, and extending inward between the 16 radial-canals are 16 blindly ending area composed of a network of vessels. There is no distinct ring-canal at the bell-margin, but the connections between the radial-canals are wider along the inner edge of the zone of anas tomosing vessels than elsewhere. 16 deltoid areas of circular muscles alternate with the radial-canals and are more or less completely separated in the radii of the canals themselves.

The canal-system of the mouth-arms is as follows: 4 vessels arise from the perradial angles of the lower side of the central stomach and extend downward into the arm-disk in the 4 perradii. These 4 primary canals bifurcate and the 8 branches extend down the 8 moutharms. The 16 lateral vessels which go into the scapulets arise from these 8 mouth-arm canals.
The central mouth is always present in very young medusæ but it usually disappears in the adult. When this mouth is present, or more or less vestigial, we often find a corresponding complexity in the mouth-arm canals, for in this case the 4 perradial canals from the corners of the lower part of the central stomach extend downward beyond the points of origin of the

Fig. 42.-Rhizosioma pulimo. From life, by the author, at. Naples Zoological Station, December, 1907.
I, oral view of bell with moutt-arm removed. One half of the surface shows sector of circular muscles, and

8 mouth-arm canals; upon reaching the cruciform, central mouth, each of these 4 canals forks and the 8 branches extend outward along the 8 lines of the frilled mouths, becoming confluent with the 8 main, mouth-arm canals in the 3 -winged parts of
detailed description of the canal-system is given by A. Brandt, I 870 .

The gelatinous substance of the disk is creamy-yellow to milky, or rusty-yellowish and The geatinous substance of the disk is creamy-yellow to milky, or rusty-yellowish and with orange, which colors the concretions. The frilled mouths are dull orange, yellow, or brownish-yellow, and the outer parts of the terminal knobs are tinged with the same color. Gonads yellowish, all other parts translucent.

This medusa is common in the Mediterranean. It is found throughout the year, but is most abundant from June until August, becoming ripe in August and September. Very small medusx are often found in June. Mature individuals are occa. When 3.5 mm . in diameter the ephyra has a central, cruciform mouth, the 4 lips of which are lined by a row of knobbed tentacles as in Aurellia. There are 8 pairs (16) of velar lappets and 8 pairs (I6) rhopalar lap pets. 16 radial-canals and a simple, circular canal. In this stage the 8 adradial canals en in the ring-canal, but the 8 others go to the bell-margin. The velar lappets develop in pairs, as in the Discomedusæ and in Stomolophus, not singly as in Aurellia or Cotylorhiza. The 8 mouth-arms arise from paired, terminal folds of the 4 primary rays of the cruciform, central mouth. A detailed description of the young ephyra is given by Claus, 1883
if the marginal sense-organs be mechanically confined the pulsation is hindered found conclusion, however, that the stimulus which produces pulsation is mechanical in nature and may be likened to that produced by the clapper of a bell in striking against the margin seems to me improbable. Pressure upon the nerve-center might readily interfere with the activity of the sense-club, and any confinement which cuts off the supply of soluble calcium from the sea-water would soon cause pulsation to cease.

A very suggestive and important series of studies of the nature of the pulsation stimulus in this medusa and in Cotylorhiza tuberculata was carried out by Bethe, r903-1909. He finds, in 1903, that under normal cond ${ }^{\text {another, with only an occasional pause of brief duration. The medusa pulsates almost inces }}$ santly. According to Bethe there are many analogies between the pulsation of this medus and that of the vertebrate heart. For example, the "all or none" principle applies to medusæ, as does also the phenomena of the extra systole and corresponding compensationperiod of rest. The medusæ also show a refractory stage during systole in which they are insensible to stimuli, as was demonstrated by Marey, 1876 (Travaux du lab., p. 73), for the vertebrate heart.

There is an increase in the time that elapses between stimulation and response, and also in the duration of the pulsation itself as the temperature is lowered from 25° to $13^{\circ} \mathrm{C}$. The pulsation-stimulus is nervous in nature, being transmitted by the difuse, nevvous networ muscles; nevertheless the pulsation-stimulus passes freely over these to the muscular areas beyond. Bethe gives a good series of figures showing the histological character of the nerve plexus which forms a network between the epithelium and the deep-lying, muscular layer of the subumbrella. The sense-organs are physiologically speaking only highly differentiated parts of the nerve-plexus of the subumbrella.

Under normal conditions the pulsation-stimulus originates in the marginal sense-organs, yet in medusx (such as Cotylorhiza) which have an inner zone of radial and an outer zone o circular muscles in the subumbrella the radial-muscles contract before the circular, although tatent priod (i, the time ther cular than for the radial muscles

The pulsation is a reflex due to a constantly present stimulus, and the refractory stage produces periodicity (rhythm) in the responses. The nerves can not send forth a new con-traction-stimulus until a definite period of rest has elapsed.

Bethe, 1908,09 (Pffüger's Archiv. für ges. Physiologie, Bdn. 124 and 127), has continued his studies of the rhythmical pulsation of Rhizostoma pulmo at Naples. He finds that artificia sea-water will not sustain life and pulsation as well as does natural sea-water unless a small amount of CaCo_{3} be added to the solution. This improvement of the artificial sea-water is no presence of the undissociated molecules of CaCo_{3}. It will be recalled that Rogers, 1905 (Journal Experimental Zool., vol. 2, p. 249), found that the addition of small amounts of CaCO to solutions containing the pulsating heart of the crab Brachynotus had a beneficial effect. He attributed this, however, to the neutralization of free acid in the solutions.

NaCl in the absence of the other salts of sea-water at first stimulates and later retards pulsation, and this effect is commonly reversible. According to Bethe, the absence of calcium in the presence of the other salts of sea-water causes all movement to cease but normal pulsation is restored by restoring the calcium to its normal amount. In a slight excess in fiom 2, to 5 c.c. of $\frac{1}{2}$ molecular CaCl_{2} in 100 sea-water calcium operates for a long time to accelerate and strengthen pulsation. In larger excess such as $10 \mathrm{CaCl}_{2}$ in 100 sea-water 1 retards pulsation and produces an abnormal duration of systole. Magnesium chloride sium tends primarily to stimulate the rhythmical movement in Rhizostoma. Thus, according to Bethe, Na, K, and Ca of the sea-water are primarily stimulants for pulsation, but are antagonized by Mg which alone is an inhibitor of pulsation, and thus a balanced solution is formed. Na and Mg exert their effect primarily through the marginal sense-organs, and Mg also acts upon the general system of muscles. Na, on the other hand, affects the nervous sysem. Potassium exerts its influence through the marginal sense-organs but has little or no direct influence upon the muscles and nervous network. Calcium in slight excess exerts all or nearly all of its effect through the marginal sense-organs.
Aluminium is an inhibitor of pulsation and is relatively more powerful in this respect than is magnesium. MgSO_{4} is a less powerful inhibitor than MgCl_{2} and the order of efficiency as
stimulants of the sodium salts is beginning with the most powerful $\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{NaCl}, \mathrm{NaI}$, $\mathrm{NaBr}, \mathrm{NaNO}_{3}$, and of the potassium salts $\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{KCl}, \mathrm{KNO}_{3}$. The rhythmical movement of the whole medusa is controlled by the marginal sense-organs.

The action of the cations of the sea-water upon Rhizostoma appear, from Bethe's work, to be similar to their effect upon Cassiopea, and I believe that the two medusæ are controlled in the same manner. (See Cassiopea xamachana.)

I think, therefore, that Bethe is mistaken in concluding that potassium and calcium stimulate pulsation. It is true in both Rhizostoma and Cassiopea that pulsation endures longer in $\mathrm{NaCl}+\mathrm{KCl}$ or in $\mathrm{NaCl}+\mathrm{CaCl}_{2}$ than in pure NaCl , but its rate is slower. Indeed the rate of pusation in NaCl is so abnormally rapid that the medusa soon comes to rest exhausted, and
this exhaustion is partially prevented by the subduing effects of K or Ca and thus the pulsation endures longer but at a slower rate. The apparent stimulation upon adding calcium in excess is not due to the direct effect of the Ca , but to the fact that Ca counteracts the stupefying effects of Mg , thus permitting the sodium to act more effectively as a stimulant. Thus the sea-water is a balanced fluid, the stimulating effect of the Na cation being offset by the stupefying effects of Mg, K, and Ca .
Hargitt, 1904, has studied regeneration in R. pulmo, and he finds that it possesses a moderate capacity, in confinement, for replacing lost rhopalia. Often 2 rhopalia regenerate in the place of the one which has been cut away. The medusa has but little power to regenerate outh-arms or gastric lobes.
nd of the nervous network of the sate study of the histology of the marginal sense-organs and of the nervous network of the subumbrella. Definite strands of nerve-fibers extend
radially inward from the marginal sense-organs under the subumbrella epithelium. These radial-fibers bend circumferentially at the zone of the ring-canal, forming a wide rino-like band of nerve-fibers on the inner side of (centripetal to) the ring-canal. These nerve-fibers arise from bipolar ganglia which are found in considerable numbers in the ectoderm along the lines of the radial-canals which extend to the sense-organs. The bipolar ganglia are derived from ectodermal cells of the subumbreila.

The ectodermal cells of the marginal sense-organs bear cilia, and some of them are sensory while others are supporting cells. The sensory pit on the exumbrella side of the ing cells, and also ganglion cells which send numerous nerve-fibers downward through the gelatinous substance into the entodermal core of the sense-club, where they form a felting of fibers extending into the region of the entodermal concretions.

The inner sensory pit on the subumbrella side of the sense-club is also lined with an epithelium similar to that of the exumbrella pit, and it also sends nerve-fibers into the senseclub. The sensory and ganglion cells of these 2 pits and of the sense-club constitute the central nervous system of the medusa

Rhizostoma pulmo var. lutea Eschscholtz,

 Senclenberg Naturforsch. Gesell., Bd. $10, \mathrm{P} .42$, ta. 8 .
This medusa, from the Straits of Gibraltar, is intermediate in most of its characters between R. pulino of the Mediterranean and R. octopus of the Atlantic coasts of Europe. Indeed the 3 forms are so closely related that we may consider them to be local varietie one of another. R. lutea is distinguished chiefly by its very long, terminal appendages on th mouth-arm

Rhizostoma pulmo var. octopus Oken.

This form is closely allied to R. pulmo of the Mediterranean, but it ranges into the cold waters of the Atlantic coasts of Europe, being found off the shores of France, England, Scotland, Belgium, Holland, and Germany. Mature individuals occur in great swarms in September and October and are often cast ashore in vast numbers. The medusa differs from R. pulmo in having 96 to 112 marginal lappets instead of 80 . The lappets are more pointed than in R. pulmo. The simple, upper part of the arm is shorter than the lower, 3 -winged widest near their outer ends, whereas in R pulmo they are widest near their bases. In other respects it appears to be identical with R. pulmo.

Vanhöffen, rgo6, describes the young ephyra, 3 mm . wide, in the stage wherein the 4 ray of the cruciform, central mouth are beginning to fork at their outer ends. There are 4 small clusters of gastric cirri. 16 radial-canals. The 8 rhopalar radial-canals extend to the marginal sense-clubs and the 8 adradial canals end in the ring-canal, which is at a considerable distanc inward from the bell-margin. This ephyra is thus similar in all respects to that of R. pulmo It is somewhat remarkable that R. octopus is not found among the Azores, Canaries, or other island groups of the Atlantic. Borlase states that in 1758 it was sometimes eaten by man in Cornwall.

Rhizostoma pulmo var. corona Eschscholtz.

Rhizostoma corona, Escriscroctz, r829, Syst. der Acal., p. 52.-VAnHörpen, r888, Billiotheca Zoologica, Bd. r, Heft. 3, P. 43

See synoptic table of the species of Rhizostoma.

This imperfectly known Red Sea medusa appears to be closely related to R. pulmo of the Mediterranean, but is said to be distinguished by having 140 to 180 marginal lappets, instead of 80 as in R. pulmo.

Rhizostoma pulmo var. capensis Lesson.

Priema capense, HAEckeL, e., 1880 , Syst. der Medusen, p. 645 .
R. 4 capense, HAEckrL, E., 180 , Syst.

Quoy and Gaimard give an artistic, but evidently inaccurate, figure of this medusa, and they fail to describe it. Their record is only interesting in that it indicates that a Rhizostoma is found in the South Atlantic.

This form is from Table Bay, coast of South Africa, in March. It may be identical with R. octopus or R. pulmo. Quoy and Gaimard's figure shows an evenly rounded, oval bell, higher than a hemisphere, with smooth or finely granular surface and with numerous rounded lappets, as in R. pulmo. The lower arms are apparently longer than the upper as in R. octopus, and the terminal clubs are bluntly pointed, taper from base to tip, and ar The colors are asper arms.

The (?) Number pulmo, but the bell and terminal clubs appear to be of a deeper blue. Saize (?) Number of lappets (?) The medusa has not been seen since the days of Quoy and Gaimard.

Genus RHOPILEMA Haeckel, r 880 .
Rhopilema, Hasccrix, 1880 , Syst. der Medusen, p. 596 .-Mass, O ., 1903 , Scyphomedusen der Siboga Expedition, Monog. II
 büch., Abch. Syst, Bd. 12, P. 205

generic characters
Rhizostomata scapulata with 8 separated, 3 -winged, adradial mouth-arms which bear numerous filaments or club-shaped appendages.

The central stomach gives rise to 16 radial-canals placed in intercommunication by a network of anastomosing vessels. A ring-canal may or may not be present.

This genus is closely reated to single club-shaped appendage arises from the lower end of each of the 8 mouth-arms and there are no other clubs or filaments; while in Rhopilema there are many appendages upon each mouth-arm. The type species is R. rhopalophora of the Indian Ocean, and the sam medusa appears to have been described by Kishinouye from Japan. Nectopilema" of Fewkes is identical with Rhopilema.

The edible medusæ of China and Japan belong to the genus Rhopilema.
The terminal clubs upon the mouth-arms of Rhizostoma are merely the downward, mouthfree extension of the axial shaft of each arm. These terminal clubs are triangular in cross of the arm. They are not homologous with the vesicular, club-shaped mouth-filaments of Rhopilema.

Rhopilema esculenta Kishinouye,

The umbrella is more than 450 mm . wide, about 330 mm . high when contracted, but nearly hemispherical when expanded. It is about 50 mm . thick at the center, but gradually becomes thin toward the margin. Exumbrella smooth, but the marginal lobes are furrowed with numerous, minute, longitudinal (radial) grooves. 8 marginal sense-organs, each with an exumbrella sensory pit which displays radiating furrows in its floor. In each octant of lappets. The ocular lappets are only about one-fourth as long and as wide as the velar lappets.

In the subumbrella the circular muscles are well developed and unitary, and the corona furrow is not distinct. The arm-disk is very thick and prismatic, about one-third as wide as the bell-diameter and somewhat longer than wide. The 4 oral pillars are quadrate and the 4 subgenital ostia are somewhat heart-shaped and as wide as the pillars. There is a rough, prickly protuberance upon the floor of the subumbrellia opposite the opening of each sub genital ostium. Altogether, therefore, there are 4 of these protuberances alternating with the 4
arm-disk pillars, and thus interradial in position. 4 separate genital cavities. 8 pairs (16) simitar-shaped scapulets arise from the adradial sides of the arm-disk. Their upper sides are convex and bear frilled mouths and numerous, hollow filaments which are about two-thirr as long as the scapulets themselv

The 8 adradial mouth-arms are stout, triangular, and pyramidal, and exclusive of their appendages they are about two-thirds as long as the diameter of the umbrella. The upper parts of these arms are coalesced with each other along half their lengths. These upper parts

of the arms are free of mouths and are about as long as the scapulets, while the lower parts are twice as long as the upper and bear numerous, frilled mouths and more than roo appendages. There are 2 kinds of appendages-filamentous and fusiform. The fusiform appendages are longer than the filaments and may be three-fourths as long as the diameter of the umbrelia,
 filaments are much more numerous than the fusiform appendages. There are no defnite he lower ends of the mouth-arms.
dradial. These canals extend to the bell-margin and are connected one with another by means of an indistinct ring-canal which is about midway between the margin and the periphery
of the stomach. On its inner side the ring-canal gives rise to an anastomosing network of vessels which fuse with the perradial and interradial canals, but not with the adradial. On its outer side the ring-canal gives off another network which fuses with all 16 radial-canals. 4 main canals arise from the lower part of the stomach in the 4 prap banch many times each fork extends down one of the 8

The color of the medusa is usually blue, but occasionally dark-red. The mouth-frills are brown and the mouth-arm appendages are milky-white, or nearly transparent. The gonads are yellow, the male being lighter in color than the female.
This medusa is abundant in the Inland Sea of Japan, and is also found off the coast of China.

It is the custom in Japan to preserve it with a mixture of alum and salt or between the steamed leaves of a kind of oak. It is then soaked in water, flavored with condiments, and when so prepared constitutes an agreeable food.

Rhopilema rhopalophora Haeckel, from the Indian Ocean east of Madagascar, is closely allied to, if not identical with, this Japanese medusa, but it is said to have a large, terminal club at the end of each arm. This club is fusiform, triangular in cross-section, and as long as the whole lower-arm itself. There are 144 lappets, the velar ones being rectangular, and he bell is 100 mm . wide and hemispherical. In other respects it appears to be similar to Kishinouye's medusa, although Haeckel's description is too brief to be satisfactory.

Rhopilema hispidum Maas.

(8) Pilema clavigera, HALcx̌xt, 1880 , Syst. der Medusen, p . 595 .

ilema hispidum, MAAs, 1993, Scyphomedusen der Siboga Expedition, Monog. II, p. 73 , taf. 9 , fign. $78-8 \mathrm{~s}$.
Bell hemispherical or higher than a hemisphere, and may become about 250 to 340 mm . in diameter. Walls very thin; the exumbrella is thickly besprinkled with small, sharp-pointed, conical projections. The 8 marginal sense-clubs have no ocelli, but above each is a large, sensory pit with radiating furrows. 80 marginal lappets. The 8 sense-organs are each flanked ach octant of the bell-margin; these velar lappets are oblong, rounded, and 3 times as long and 5 times as wide as the ocular lappets.

The arm-disk is of the usual 8 -sided form. The 4 interradial subgenital ostia are, according to Maas, not quite so wide as the perraina colis "Rhopilema verrucosa," which appears but according to Kishinouye the subgenital ostia in his "Rhoplema verrucosa, which appears
to be identical with R. hispidum, are 3 times as wide as the perradial columns. The 4 genital cavities are only partially and irregularly fused and do not form a unitary genial space, as in Mastigias and Crambessa, nor are they completely separated into 4 cavities, as in Cassiopea They are fused one with another in the upper thirds of their lengths and are free in their lower two-thirds. There are 16 scapulets, 2 of which arise from the abaxial (outer) side of each of the 8 upper arms. Each scapulet is simitar-shaped and forked at its outer end, and is about half as long as the radius of the umbrella. There are frilled mouths and elongate filiform appendages upon the upper side of each scapulet.

The lower arms are 3 -winged or Y-shaped in cross-section, one wing being inward and axial, the other wings being lateral and directed outwardly. Each of these lateral wings is of the shape of an equilateral triangle, and there are 4 elongate, sharp-pointed projections from the abaxial angle of each wing. The pointed lowermost end of the lower arm terminates in a large, club-shaped appendage, with a faceted, swollen end. This appendage is about arise between the frilled mouths of the 3 wings of each of the lower arms.

The canal-system of the umbrella consists of 16 radial-canals, 4 perradial, 4 interradial, nd 8 adradial, the adradial ones being nearer to the perradial than to the interradial canals. All of the canals extend quite to the bell-margin, and all give off side branches which form an anastomosing network. A definite ring-canal is not present. The circular muscle-system
of the subumbrella consists of 16 triangular areas which alternate with and are widely separated by the 16 radial-canals.

This medusa was described by Vanhöffen from Hongkong, China, and later by Maas rom the Malay Archipelago. It appears to be identical with R. verrucosa Kishinouye, from Japan. R. hispidum is possibly identical with Pilema clavigera Haeckel; but in Haeckel's medusa there are only 48 marginal lappets when the disk is 90 mm . wide, whereas in R.
hispidum of the same width there are 80 marginal lappets. The granular projections upon hispidum of the same width there are 80 marginal lappets. The granular projections upon
the exumbrella in Haeckel's medusa are bluntly rounded, whereas in R. hispidum they ar the exumbrella in Haeckel s medusa are bluntly rounded, whereas in R. hispiaum they are
sharp and thorn-shaped. The terminal appendages of the mouth-arms appear to be some what longer in Haeckel's medusa than in R. hispidum. Haeckel describes "Pilema clavigera" from a single alcoholic specimen from Hongkong, China.

Rhopilema verrillii.
 Plate 74, figs. I, r^{\prime}.

Tetilema verrilli, $\mathrm{F}_{\mathrm{wwxss}}$, 1887, American Journ. Sci., ser. 3, vol. 33, p. xig, plate 4

The disk is fully 350 mm . in diameter, hemispherical in contraction, but slightly flatter than a hemisphere when expanded. The gelatinous substance is thick and rigid. The center of the exumbrella is smooth, but over the lappets there are many shallow furrows and he surface near the margin resembles sand-paper, being covered with numerous minute ele vations. There are 8 marginal sense-organs, each of which contains a terminal, entoderma concretion-mass of red pigment granules. There is a simple, exumbrella sensory pit without furrows; 64 marginal lappets. There are 6 large, oval lappets in each octant of the margin of the disk, togerher with 2 small, oval lappets adjacent to the sense organs

The arm-disk is cruciform and about half as wide as the bell, and the 4 perradial columns are only three-fifths as wide as the heart-shaped, subgenital ostia. 8 short, tough, gelatinous, lower mouth-arms, which arise from the arm-disk, are each about 180 mm . . 1 ng
and Y -shaped in cross-section below. They branch sparingly and the very numerous mouths are found upon their lower and inner sides, in furrows bordered by numerous, small, waving cirri. There are about 25 to 60 blunt, translucent spindle-shaped appendages, which arise from the lower sides of the mouth-arms, and are besprinkled with wart-like clusters of nematocysts. The largest filaments arise from the principal crotches of the mouth-arms.
A pair of short flapper-like, lateral scapulets arise from the outer side of each of the 8 mouth-arms near its base, the mouth-openings of which are confined to their upper edge attached. There are no appendages upon the scapulets. 4 short, gelatinous, perradial column connect the arm-disk with the subumbrella. There are 4 deep, heart-shaped clefts or genital ostia between these 4 columns, but the bottom of each cleft is bridged over by a delicat membrane. The 4 separate gonads develop within this membrane and the stomach is bor dered on the sides by the 4 stout, perradial columns and the 4 interradial membranes The 4 genital sacs are separated one from another; indeed the gonads are somewhat protruive in old medusx

There is a blunt wart-like papilla upon the subumbrella surface at a short distance beyond the opening of each genital ostium, and this partially constricts the opening, giving it a heart-shaped outline. The circular muscles of the subumbrella are very powerfu, but entire near the margin in young animals. Thus in old meduse there are 16 parcially isolated arcades of circular muscles as in Rhizostoma pulmo. There are no radial muscles.

The stomach is wide and cruciform, and corresponds in outline with the cruciform arm disk under which it lies. Its exumbrella roof is plane, but the subumbrella floor dips downward into the center of the arm-disk, and 4 open, perradial, gutter-like furrows extend from this central depression down the center of each perradial column to the outer edge of the stomach. 4 perradial ducts arise from the depressed center of the stomach at the middle of the arm-disk, and these soon bifurcate giving 8 adradial ducts which extend down each of the 8 mouth-arms giving off side branches to the numerous mouths.

The axial ducts of the 16 small, flapper-like, lateral scapulets connect directly with the axial duct of the arm to which they are attached. The large, central stomach gives rise to 16 main radial-canals which extend outward to the 8 sense-organs and to intermediate points on the bell-margin. These 16 main radial-canals give rise to numerous side branches which anastomose in a network of vessels as in Rhizostoma pulmo. There is no definite ring canal in the adult.

The gelatinous substance of the medusa is translucent, dull, milky-yellow. The mouths the cirri. The ring-muscleste-red blotches of pigment scattered at intervals at the bases of the cirri. The ring-muscles of the subumbrella are a decided yellow, and according to Fewkes
the radial-canals are chocolate or rich chestnut in color. In the specimens studied by me, however, they were yellow. The gonads are dull milky-yellow. There are numerous, small, gastric cirri upon the gonads.

Fiv. 424 - Rhopilema verrilii. Drawn by the author from a specimen obtained by Professor Verrill at Drawing one-half shatad naurar size. Banford, of connethecticut.

Wing one-half natural size. 6 of the mouth-arms are cut off close to theit bases, and the scapulets are
cut off from 4 of them in order to show 2 of the subgenital ostia. The muscular arcades are

This rare medusa was first found by Prof. A. E. Verrill, in 1886, in New Haven Harbor, Connecticut, during September. In 1889, Professor Verrill again found it in considerable numbers among the Thimble Islands about io miles east of New Haven, in Long Island Sound, where they were common in August and September. They then disappeared, but were again found at the Thimble Islands during the summer and autumn of rgo3, and specimen figured on plate 74 at Middleton, Pamlico Sound, North Carolina, in November,

1904, where it was swimming near the surface on a calm morning. The fishermen informed me that it is seen quite frequently in Pamlico Sound in autumn. I believe, there fore, that it is a southern form which occasionally establishes itself in Long Island Sound The following are the dimensions in mm . of a specimen of Rhopilema verrillii found by Professor Verrill at Outer Island, near Branford, Connecticut, in Long Island Sound, on September 12, 1909.

```
Miameter of contracted bell, 218.,
```



```
lol
Circumferential width of subgenital ostium, 4
Radial width of subsenital ostium, 27.
Width of ocular lappets,,3.
```

```
Width of largest velar lappets,, ,1.
L
Length of mouth-bearing part of scapulets, 35.
L Length of lower arms, 65. (% lower arms, 54\pm.
Width at widest ditsal part of lower arms, 54\pm.
Length of longest mouth-arm appendages, 26.
```

Genus EUPILEMA Haeckel, 1880

The type species is Euphilema scapulare Haeckel, from the Malay Archipelago. Cyanea rhizostoma Brandt, 1838 , may be of the same genus, but is too imperfectly described to be determined.

generic characters

Rhizostomata scapulata with 8 free, 3 -winged mouth-arms, without filaments, clubs, or other appendages. I6 radial-canals all connected by an anastomosing network of vessels in the outer parts of the subumbrella.

This genus is closely related to Rhizostoma, but has no mouth-arm appendages

Eupilema scapulare Haeckel.

Bell 150 mm . wide, 50 mm . high, hat-shaped with rounded dome. 8 rhopalia, 144 lappets. In each octant 8 pairs of long, narrow, rectangular, projecting, velar lappets, between 2 small, oval, ocular lappets. Mouth-arms not quite as long as bell-radius. Scapulets simitar-shaped, as long as free, upper part of arm. I7 radial-canals all connected by an anastomosing network of vessels which extend in ward to the zone of the bases of the arm-disk pllas. The for the

Very briefly described from a preserved specimen by Haeckel.

Genus STOMOLOPHUS L. Agassiz.

Stomolophus, Acasszz, L., 1862, Cont. Nat. Hist. U. S., vol. 4, PP. I38, ryr.-Acasssz, A., , 8865 , North American Acal., P. 40 CoAvs, 1883 ,

The type species is S. meleagris L. Agassiz, which ranges from South America to the mouth of Chesapeake Bay, United States, and is apparently found also on the Pacific side of the Isthmus of Panama

generic characters

Rhizostomata scapulata with a central mouth-opening. With a well-developed, tube-like manubrium formed by the fusion of the lateral edges of the 8 primitive mouth-arms. Only the extreme ends of the mouth-arms are free and they branch complexly. 8 pairs of scapulets. are all connected by a marginal network of anastomosing vessels. 8 marginal sense-organs.

Brachiolophus Haeckel is only a young stage of Stomolophus.

Bell 18 m
Bell about 180 mm . in diameter, haff-egg-shaped, higher than a hemisphere, the gelatinous substance thick and rigid; no marginal tentacles; 8 marginal sense-organs, 4 radial and 4 interradial. Each sense-club is deeply set within a niche between the ocular lappets and is protected above by a partial web between the lappets. Sense-club hollow and spindle-shaped, terminating in a knob-like end which contains an entodermal mass. of deeply pigmented concretions. A deep, 3 -sided, furrowed pit projects inward from the surface of the exumbrella just above the base of each sense-club (see [c] fig. $2^{\prime \prime \prime}$, plate 75). About 128 marginal lappets, r6 in each octant, those flanking the sense-organs being about 3 times as long as the others The velar lappets have rounded edges, but the ocular lappets are longer and sharp-pointed.
A rigid, thick-walled mouth-tube, or manubrium, projects downward from the center of the subumbrella and extends 40 to 50 mm . beyond level of bell-margin. This manubriumlike tube is formed by the lateral coalescence of the 8 adradial mouth-arms, which are fused along their adjacent sides, their extreme ends only being free. These free ends of the mouth arms bifurcate and flare outward at lower end of manubrium. A deep groove, or gutter, extends along the ventral side of each of the 8 mouth-arms and branches dichotomously twice and extends outward over the lower sides of the 16 free ends of, the mouth-arms. The free edges of this branching groove are complexly branched and folded and are lined by a row of numerous small knobbed tentacles, which move constantly in such manner as to drive food particles into the mouth-grooves. In addition to the central mouth, there are numerous slit-
like lateral mouths which are situated upon 16 knife-blade shaped scapulets attached to the upper part of, and occupying more than half of the length of, the manubrium. The free edges of these lateral mouths are complexly crenulated and lined with small, incessantly waving of these lateral mouths are complexly crenulated and lined with small, incessantly waving
tentacles exactly as are the mouth-grooves at the free extremity of the manubrium (fig. 2 , plate 76). The 8 main mouth-grooves of the manubrium lead into a 4 -cornered, central œsophagus which extends upward into the wide, central stomach. 16 lateral branches, 4 from each side of this four-cornered œesophagus, extend outward to the slit-like mouths in the 16 scapulets. These radiating tubes arise from the cesophagus near the level of the upper parts of the scapulers. The central stomach is wide and lenticular, and occupies the midst of the umbrella. It gives rise peripherally to 16 radial-canals which in their outer of the radial-canals in connection one with another, as in the genus R hizostom placing all canal. mbrella surface just beyond the opening of each genital ostium. The gonads are found in 4 folded regions in the wall of the subumbrella at the bottom of the subgenital pits. There are 16 semi-elliptical areas of circular muscles in the subumbrella, 2 between each successive pair of sense-organs. Alternating with the circular-muscle areas there are 16 narrow, triangular strands of weakly developed radial-muscle-fibers, the broad end of each triangle abutting against the side of the manubrium, and the narrow, pointed end being directed position. The bell-margin pulsates incessantly with remarkable strength and rapidity.
The gelatinous substance of the bell is of a milky bluish or yellowish color and the dermal parts are dull yellow. The surface of the exumbrella is reticulated with brown pigment which is especially dense near the margin. There are numerous white or yellowish spots in this brown marginal zone. The mouth-frills are brownish-pink.

Young medusa.-I have captured an immature medusa of this species in which the bell was 3 mm . in diameter and the entire animal 5 mm . in length (fig. 3, plate 75). The bell was flatter than a hemisphere and the surface of the exumbrella was covered with wart-like clusters of nematocysts, among which there were numerous, brown-colored pigment cells.

There were 8 marginal sense-organs and 48 marginal lappets (fig. I, plate 76). The lappets flanking the sense-organs were about twice as long as the others. The ocular lappets were, however, simple while the others were bifurcated and evidently in process of division. The bifurcated lips. The free edges of these lips were lined by a row of short, slender, knobbed tentacles which maintained a constant motion. In addition to the principal or terminal mouth there were 8 small, tube-like, lateral mouths arranced in 4 pairs, the beginnings of the scapulets. These mouths arose from the sides of the manubrium near its base and were interradial in position (i. e., 90° from the radii of the 4 principal lips), and in addition to these lateral mouths there were 4 pairs of hernia-like projections upon the surface of the manubrium. These projections alternated in position with the already functional, lateral mouths, and would no doubt soon have broken through and formed another set of such mouths (fig. I, plate 76). The functional mouths were each surrounded by 8 tentacles which were similar in structure to the tentacles lining the free edges of the principal mouth:
wn pigment in the ectoderm of the exumbrella and the dark-red pign

The resemblance between this young rhizostomous medusa and the adult condition in the Semæostomex is very striking. The terminal mouth was used, indeed, for the capture of food, an operation which was facilitated not only by the flexibility of the lips but also by the incessant motion of the tentacles.

This species is very common along the sandy coasts of North and South Carolina and Georgia. In April, Igro, mature meduse were abundant at Tortugas, Florida. It does not extend north of the mouth of Chesapeake Bay. It is found along the northern coast of South America, and at many places in the Bay of Pama on the Pacific side of the Isthmus. It offen occurs in vast swarms, occupving an area which is sometimes over too miles in length. Mature individuals are abundant in winter and spring off the coast from Florida to South Carolina. It is not often seen in brackish harbors, but is practically confined to pure ocean water off the coast. At most it enters only the mouths of harbors.

I can see no difference between S. chunii Vanhöffen and S. meleagris. S. chunii is described as being only 90 mm . wide and with only 112 marginal lappets. In all respects it resembles a half-grown S. meleagris. Indeed, Trinci, I 906 , records S. chunii from the Gulf of Paria between Trinidad and Venezuela, Atlantic coast of South America, and it appears, therefore, that "S. chunii" must occur on both Atlantic and Pacific sides of the Isthmus of Isthmus in Mesozoic times.

Haeckel's Brachiolophus collaris is only a younger stage of the same medusa with a bell 80 mm . wide and with 80 marginal lappets. It is described from the Galapagos Islands.

Stomolophus meleagris var. fritillaria

Bd. I, Heft. 3, PP. 3T, 42.
This form appears to be smaller than S. meleagris, the bell being only about 80 mm . in diameter and 60 mm . in height. The marginal lappets are more numerous, being 208 in number. The "manubrium" or fused tube of mouth-arms extends only about one-fourth in S. melcagris. This medusa is found at Suranim on the Atlantic coast of South America. Color (?)
The only valid distinctions between this medusa and S. meleagris are in its large number of marginal lappets, and in the cleft in the middle of each octant of velar lappets. Also the i6 scapulets are hidden well up under the bell instead of extending down to about the level of the bell-margin. It may be regarded as a southern variety of S. meleagris. Haeckel describes it from 3 alcoholic specimens in the Copenhagen museum.

These are probably only immature or torn and regenerating forms which are rendered still more unnatural through shrinkage in alcohol. I present this account of them merely in cription of the genera folliows:

Haeckel is the only naturalist who has seen any of these forms. They are all small and I incline to the belief that they are merely immature stages or injured and regenerating specimens of various other rhizostomæ in the condition preceding the development of the ultimate ramuli of the mouth-arms. Vanhöffen (1902, Wissen. Ergeb. Valdivia Exped., Bd 3, Lfg. I, p. 52) believes them to be merely mutilated meduse with the branches and appendages of the . 1 h inms lost or reduced. 1 h

Genus "ARCHIRHIZA" Haeckel, 1880 .
Archithiza, Hasckri, 1880, Syst. der Medusen, p. 565.-Vaņ̣̆̈rrens, r888, Billiotheca Zoologica, Bd. r, Heft. 3, P. 39 .
generic characters.
Rhizostomata simplicia with 8 simple separate, unbranched mouth-arms. With 4 separate, subgenital cavities. With 16 radial-canals, some or all of which may give rise to anastomosing side branches. The ring-canal gives off an anastomosing network of vessels which ramify
through the marginal lappets. The mouths have no appendages and are found only on the ventral sides of the mouth-arms. 8 rhopalia.

Haeckel founded this genus for Archirhiza primordialis from Bass Strait; Australia. Later he describes another medusa, A. aurosa, from New Zealand, which is apparently only a later Indeed, I suspect that both of these medusx are immature, or "reconstructed" from fragmentary specimens.

Archirhiza aurosa Haeckel

 Archirhizac aurosa (mature ?), HAscxrt, loc. cit, p. $645 \cdot$

Young. medusa (?).-Bell flatly and evenly rounded, hemispherical in contraction, 2 to 3 times as wide as high when expanded. 40 mm . wide. Exumbrella finely granulated as in Aurellia. 8 rhopalia, perradial and interradial. 48 marginal lappets. In each octant 2 large median, flanked by 2 smaller velar lappets, and with 2 still smaller, rhopalar lappets flanking the sense-organs. All of the lappets are pointed. Diameter of arm-disk two-thirds as wide as bell-radius. 8 simple, separate, fleshy, unbranched, recurved mouth-arms arise in 4 pairs on either side of each perradial corner of arm-disk. These moun-arms arm. These 8 lines of mouths of the mouth-arms fuse into 4 perradial lines over the mouth-arm-disk. The mouth-arms are shorter than the bell-radius and are simitar-shaped, but fleshy and blunt at their ends. 4 separate interradial genital sacs are invaginated into the stomach cavity, so the arm-disk displays 4 interradial subgenital ostia. The central stomach gives rise to 16 radialcanals, of which the 8 perradial and interradial canals give off branching side branches near the bell-margin. The 8 adradial canals are simple. All 16 canals and their side branches fuse with a well-developed ring-canal at the zone of the rhopalia, and on its outer side this ringcanal gives off a close-meshed network of small vessels which anastomose throug
lappets. Color (?) Found in Bass Strait between Australia and Tasmania.

It is highly probable that the medusa described above is only the young of the form called Archirhuza aurosa, by Haeckel, from New Zealand. This is larger, being 50 mm . in diameter. There are 80 instead of 48 marginal lappets. In each octant 8 oval, pointed velar between 2 small, triangular, rhopalar lappets. Mouth-arm conical, more pointed than in A. primordialls, and 1.5 times as long as bell-radius. All i6 of the radial-canals give of
Altogether, the differen

Altogether, the differences between A. "primordialis" and A. aurosa are precisely such as one would expect to occur during the growth of the medusx. They are probably only young stages of some species of Catostylus.
"Genus Haplorhiza" Haeckel, 1880

generic characters.
Similar to Archirhiza but with a unitary subgenital cavity instead of 4 cavities as in Archirhiza.

This single, subgenital cavity or "porticus" is cruciform in shape and formed by the fusion of the 4 primitive interradial genital sacs and the breaking down of the walls in th fused regions, thus forming a cross-shaped cavity beneath the stomach. It is in communication with the outer world through the 4 genital ostia, and is separated completely from the centra contain the genital products.

Haplorhiza simplex Haeckel.

Haplorhiza simplex, Hascres, 188o, Syst. der Medusen, p. 604
Bell flat, shield-shaped, 40 mm . wide, 20 mm . high. 8 rhopalia. 48 marginal lappets. In each octant 4 large, quadratic velar, between 2 tongue-shaped, projecting, ocular lappets. 8 simple, cylindrical mouth-arms, as long as bell-radius. 4 interradial, subgenital ostia, no Suite as wide as the arm-d

This medusa is very briefly described by Haeckel, but in all respects it appears to be an immature stage of some other rhizostomous medusa such as Catostylus. Its 8 simple moutharms lack appendages and resemble those of the immature Archirhiza primordialis Haeckel. The mouths are confined to the ventral sides of the mouth-arms.

Haplorhiza punctata Haeckel.

Haplorhiza punctata, Hacckxt, 1880, Syst. der Medusen, p. 604
Bell flatly rounded, 40 mm . wide, 20 mm . high. 8 rhopalia. 176 marginal lappets, in each octant 10 pairs of small, rounded velar lappets between 2 small, rhopalar lappets. 8 simple, cylindrical mouth-arms, hardly half as long as bell-radius, arise in pairs from the perradial angles of the wide 4 -cornered arm-disk. The frilled mouths are confined to the ventral sides of the mouth-arms and there are no appendages. The 4 subgenital ostia are 3 times as wide as the columns between them.

Exumbrella dark violet-brown, besprinkled uniformly with round white points.

"Genus Cannorhiza" Haeckel, r880

Cannorhiza, Harcxxl, 1880, Syst. der Medusen, p. 605.-VANHöffen, z888, Bibliotheca Zoologica, Heft. 3, p. 39 .
The type species is Cannorhiza connexa, Haeckel, from the neighborhood of New Zealand, South Pacific.

generic characters.

Rhizostomata simplicia with 8 simple, unbranched mouth-arms, the sides of which are fused one to another forming a hollow mouth-arm-cylinder, and leaving only the lower end of the arms free. There were neither clubs nor filaments upon the mouth-arms. There is a unitary subgenital porticus. 8 rhopalia. The central stomach gives rise to 24 branching radialcanals which fuse with a ring-canal. Peripherally the ring-canal gives off a network of vessel
which ramify through the lappets.

Cannorhiza connexa,
Heft. 3 , p .39.
Bell fatly rounded, exumbrella surface finely granulated, 80 mm . wide, 30 mm . high. Gelatinous substance tough and horny in consistency. 8 rhopalia. 80 marginal lappets. In each octant are 8 small, rectangular, velar lappets between 2 small, oval, pointed, rhopalar lappers. The 8 mouth-arms are fused along their sides forming a mouth-arm-cylinder. Each mouth-arm is cylindrical, somewhat longer than the bell-radius. The short, free, lower end of each mouth-arm is simple, unbranched, curved outward and somewhat upward. The lateral fusions of the 8 adradial mouth-arms are marked by 8 longitudinal furrows, the 4 perradial being shallower than the 4 there are neither filaments, clubs, nor other appendages The 4 interradial, subgenital ostia are not quite as wide as the perradial spaces between them, and the arm-disk is not quite as wide as the beil-radius. There is a cruciform unitary subgenital porticus and the 4 gonads are in the side walls of this space, the cruciform roof being thick and gelatinous. The 4 genital membranes are much folded. The cruciform central
 stomach lies above the subgenital porticus from which it is completely separated by the lateral genital membranes and gelatinous, cruciform roof of the porticus.

A wide canal extends downward from each of the 4 perradial corners of the stomach, through
the columns, into the arm-disk, where they fuse at the center, forming a small cavity from which arise the 4 pairs of canals leading down the lower sides of the 8 adradial mouth-arms. Each mouth arm canal gives off numerous short side branches which lead to the frilled mouths. 24 radialcanals arise from the margin of the cruciform stomach and extend outward into the subum
breila. The 8 perradial and interradial canal are about twice as wide as the others. The 4 Fig. 425 .-"Cannorhiza cornexa,", after Haeckel, in Das perradial canals are very short and the 4 inter radial very long. All 24 canals give off anas tomosing side branches and then fuse with the ring-canal. The ring-canal, in turn, give rise on its outer side to a fine-meshed network of narrow, anastomosing vessels which ramif through the lappets: Found near New Zealand, South Pacific. Described in detail by Haeckel

"Stomatonema reticulatum" Fewkes

ma reticulatum, Fewkes, 1884, American Naturalist, vol. 18 , p. 300

Bell 36 mm . wide, with thick walls, thinner at margin. There are no marginal tentacles There are 8 marginal sense-organs which bear some resemblance to those of A urellia. Shape and number of marginal lappets (?) The 8 mouth-arms arise from the arm-disk by 4 attachments and are bordered on their lower sides by a double row of mouths which also extend half-way up the upper side of each mouth-arm. 4 large, globular, ovarian sacs lie in the interradii of the arm-disk alternating with the 4 primary branches of the mouth-arms. A tomosing vessels at the bell-margin. Fewkes does not state how many radial-canals there are in this medusa, nor does he give any account of the marginal lappets, musculature, relative sizes of the parts of the medusa, color, gonads, or mouth-arm-appendages. He mentions a sizes of the parts of the medusa, color, gonads, or mouth-arm-appendages. He
single specimen found in Montevideo Harbor, Atlantic coast of South America
The description given by Fewkes is unfortunately too fragmentary even for generic determination, but apparently the medusa is related to Haeckel's Aurosa, but is distinguished by having mouths on the dorsal as well as on the ventral sides of the 8 mouth-arms.

FOSSIL MEDUSAE.

Fossil medusx, or in many cases fossils supposed to be those of medusæ, have been described from the lower Cambrian and Devonian, and especially from the Jurassic lithographic slates of Bavaria wherein their preservation is so perfect that in some cases, as in

Owing to the uncertainty with which we must regard many of these fossils I have deemed it best to group them together and not to attempt the fruitless task of classifying them, excepting in cases wherein their state of preservation warrants such a procedure.
A thorough review accompanied by excellent illustrations of all fossil medusx known previous to 1898 is given by Walcott in Monographs U. S. Geological Survey, vol. 30 , I898, and this work should be consulted by all students of the subject, for the account here given does not attempt to present detailed descriptions.

Medusina radiata Walcott.

This fossil medusa from the lower Cambrian sandstone of Sweden is probably one of the Equoridæ and bears a general resemblance to the genus Z ygodactyla. Bell 40 to 60 mm . wide. Central stomach 25 to 30 mm . wide. 130 to 150 radial-canals which occasionally branch. Subumbrella with radiating string-of-pearl-like papillæ as in Zygodactyla. Nathorst describes interradial as in Zygod actyla

Pompeckj's somewhat
probably an Equorea, and not a medusa from the middle Cambrian beds of Bohemia is probably an lquorea, and not a Zygodactyla.

sina princeps Torell

This fossil from the lower Cambrian of Sweden is of doubtful affinities. Nathorst's conclusion that it is one of the Cyaneidæ because the exumbrella floor of the stomach exhibits polygonal facets appears to me to be too venture
umbrella resemble the radial-canals of $\nsubseteq q u o r e a$.

Medusina deperdita Walcott.

It is possible that this fossil medusa from the Jurassic limestone of Eichstädt may belong . the genus Cunoctantha, but there are no tentacles and we have only the 8 stomach-pouches ponches 45 mm . wide. pouches 45 mm . wide.

Paraphylites distinctus Maas.

arapaphylitites distininctus, Maas, rgo6, Neu. Jahrb. Min. Geol., Palǜnotol., Bd. 2, p. 90,4 fign.
The preservation of this fossil from the Jurassic lithographic slates is so perfect that its affinities with living medusæ can be determined. It is the

Cannostomites multicirrata Maas

Cannostomites mulicicirrata, Mass, y goo, Palüontographica, vol. 48 , P. 303 , taf. 23, fig. r, text-fig.
This is a fossil from the Jurassic lithographic slates of Bavaria. A single specimen was studied by Maas. It may possibly be allied to A tolla. Only the subumbrella is known. Bell about 100 mm . wide. An open, central mouth with 4 perradial, gelatinous columns. Sub umbrella simple with 4 interradial sickle-shaped, notched, and swollen gonads. Marginal ring-muscle entire and powerfully developed as in Atolla. Numerous marginal lappets of varying sizes arrange
between the lappets.

Atollites minor and Atollites zitteli Maas

Atollites minor and A. zitelel, MaAs, , Igoz, Palüontographica, Bd. 48 , P .3 299, taf. 23 , fign. 5 und 6 .
These fossils are from the lower chalk of Carpathia from the Warnsdorf strata. There are more than ro marginal lappets in high relief, quite variable in size and number. A small, plain center of the exumbrella and an intermediate zone with raised streaks radiating outwardly. The medusæ may be allied to Atolla. They are well figured by Maas.

Acraspedites antiquus Haeckel.

 Abhand. Math.-phys. Classe König.
Surr., vol. 30, P. 75 , plate 44 , fig. 2 .
This is the vague impression of a medusa in the Jurassic white coral limestone, litho graphic slate of Eichstädt, Bavaria. It is about 140 mm . in diameter and appears to have marginal lobes. The sculpturing of the bell may place it among the Coronata, but Haeckel is inclined to classify it. with the Pelagidæ.

Gemaeostomites zitteli Haeckel

 Monographs. U. S. Geol. Surv., tool. $30, \mathrm{p} .70$, pl. 39 , text-fig. 17
This semæostomous medusa is found fossil in the Jurassic lithographic slate of Solenhofen Bavaria. According to Haeckel the disk is 80 mm . wide, mouth with 4 lips each about 80 mm . long and io mm . wide. Central stomach cruciform. 4 interradial, elliptical, genital pouches each 8 to 10 mm . wide. 16 unbranched (?) radial-canals; 4 perradial, 4 interradial, and adradial. A ring-canal at some distance inward from the margin. 120 to 128 marginal lappets, of the Ulmaridæ allied to Discomedusa.

Eulithota fasciculata Haeckel.

This is a fossil medusa from the Jurassic lithographic slate of Solenhofen, Bavaria
16 marginal lappets. 8 clusters, each composed of at least 4 tentacles, which arise from 8 perradial and interradial ($?$) thickened pads between the lappets. These pads may represen the 8 rhopalia. 16 crescentic gonads around the stomach-margin. I6 interlobular radia living ally appears to be Sthenonia or Poralia.

Myogramma speciosum Mas.

Myogramma speciosum, MaAs, 1902, Paläontographica, Bd. 48, p. 298, tafn. 22, 23.--von Ammov, rgo8, Geonostischen Jahres heften, Jahrg. 19, P. 174, ign. 2, 3 .
This fossil is from the lithographic slate of Solenhofen. Discomedusx with flatly rounded bell. 4-rayed in the organization of the central stomach. 8-rayed at the bell-margin. In the
subumbrella a wide marginal ring-muscle, an intermediate zone of 16 feathered arcades as in Cassiopea, and an inner zone of ring-muscles around the central stomach

At the bell-margin there appear to be numerous thickly set, short, branched, tree-like tentacles. The mouth-parts are lost. Maas studied 3 imperfect specimens of this remarkable medusa which appears to be distinguished from all other Scyphomedusæ by its branche
marginal tentacles. His best preserved specimen was 300 mm . wide.

Genus MEDUSINA Walcott, 1898

Medusina, Waicorr, r898, Monograph U. S. Geol. Surv., vol. 30, p. 49
Walcott proposes the name Medusina to designate all fossil medusa whose generic characters can not be determined.
Among the most obscure are M. quadrata, M. bicincta, M. staurophora, M. circularis, and M. porptitina from the Jurassic lithographic limestone of Bavaria, and M. atava from the Permian. All of these are well described by Walcott, loc. cit., pp. 93 to 96 . Beyond the fact that these fossils are apparently medusæ not much can be said of them, and in most cases we can not be certain as to whether they are Scyphomedusæ or Hydromedusx.

Medusina costata Walcott.

 Corr, r891, Tenth Ann. Report, U. S. Geel. Surr., Part I, plate 56, figs. I-

This fossil from the lower Cambrian sandstone of Sweden, at Lugnas and Timmerdal in Mount Billingen, is probably an Aurellia. The best description is presented by Walcott.

Medusina geryonides Huene

This fossil medusa is from the Murchison sandstone of Wiesensteig in Würtemburg. It is about 28 to 30 mm . in diameter. In the center there is a crater-like elevation with an irreg 12 radiating concavities, the deepest being 2.5 mm . deep. Huene suggests that this medusa may have been related to the Geryonidæ, but this is wholly problematical, and it appears to me that it might equally well be a cast of Brooksella. Fuchs casts doubt upon its being a fossil medusa.

Laotira cambria Walcott.
Laotira cambria, Wat corr, 1896, Proc. U. S. Nat. Mus., vol. r8, p. 613, plate 32, figs. $\mathrm{I}-8$; 1898, Monographs U. S. Geol. Surv.,
vol. $30, \mathrm{p} .32$, plates $5-19$, 21-23.
This is a fossil from the middle Cambrian shale of Coosa Valley, Alabama, and is suppose This is a fossil from the middle Cambrian shale of Coosa Valley, Alabama, and is supposed
to be that of a medusa. It is a remarkably variable form and quite distinct from any living medusa. It probably reproduced by fission as does Gastroblasta.

Walcott defines it as Discomedusx with a lobate umbrella with 4 to 12 lobes in simple forms and with a large number in the compound forms. No tentacles and no central mouth openings in the adult. A simple radial-canal in each lobe of the umbrella and in the interradii. Oral arms represented by interradial lobes attached to the central axis and to the central lobes. Described in full detail by Walcott, i898. It shows a tendency to intergrade in its simplest forms with Brooksella confusa from the same formation

Dactyloidites asteroides Walcott.

 Geol. Surr., vol. 30, p. 4r, plates $24-28$.
This fossil is from the lower Cambrian terrane of Eastern New York at Penrhyn Quarry, Middle Branville, Washington County, and from St. Albans, Vermont. It is an irregular,
star-like fossil, and sometimes two stars are joined by a single lobe. It appears to have been gregarious, for Walcott records 42 specimens on a slab of slate 37 by 62 inches. There is of course no proof that these fossils are those of medusx.

Rhizostomites admirandus Haeckel.
Rhizostomites admirandus, Harcrist, r866, Neues Jahrouch für Min. Geol. und Paleontol., p. 26r, taf. 5; 1869, Zeit.fiur wissen.

von Ammon, who has made the most thorough study of this fossil from the Jurassic ithographic limestone of Solenhofen and of Eichstädt, Bavaria, has decided that it is identical with Haeckel's Rhizostomites lithographicus, and that Leptobrachites trigonobrachius identical with Haeckel s Rhizostomites hithographicus, and that Leptoorachites trigonobrachius
is probably the same medusa turned over on its side. He also concludes that Haeckel's Hexais probably the same medusa turned over on thes side.
rhizites insignis is only a 6 -rayed aberration of the same medusa. A thorough review of the literature of this subject and excellent figures are presented by Walcott, 1898 , loc. cit.

According to von Ammon and Walcott the disk in Rhizostomites is round and as large as 400 mm . in diameter, with 4 to 8 principal lobes and about i28 small marginal lappets of various sizes, and indentations of the bell-rim marking the places of the 8 marginal senseorgans. No marginal tentacles. A wide zone of circular muscles in the subumbrella, unbroken
in the rhopalar radii. I6 radial-canals, 8 rhopalar and 8 inter-rhopalar; and a circular canal in the external third of the umbrella. A strongly marked, circular depression between the musclezone and the arm-disk may indicate an inner ring-canal. 4 not very wide subgenital ostia, with 4 opercula forming lappets. Probably 8 long, thin mouth-arms with crinkled appendages, and apparently with a tassel-shaped tuft at the lower end.

This is undoubtedly a Rhizostomous medusa which appears to belong to an extinct genus related to the modern Rhizostomata triptera or lorifera. Maas, 1902, gives a remarkably clear photograph of the margin showing one of the sense-organs, and he discusses the probable form of the gonads.

Brooksella alternata Walcot

Brooksella ahernata, WaAcorr, 1986, Proc. U. S. Nat. Mus., vol. 18, P. 6i2, plate 3r, figs. I-5; 1898, Monographs T. S. Geol. Turv, p. 23, plates $\mathrm{x}-4$.
This fossil from the middle Cambrian shale from Coosa Valley, Alabama, is supposed to be that of a medusa. They are 40 to 50 mm . in diameter. From 5 to 20, usually 5 to 8 , more or less distinct marginal lobes. No tentacles. A simple radial-canal in each lobe of the umbrella. Oral plate quadripartite with 4 oral arms anising

This form was possibly allied to the Rhizostomæ and may have had habits similar to those of Cassiopea.

Brooksella confusa Walcott
Brooksella confusa, Warcorr, 1896, Proc. U. S. Nat. Mus., vol. 18, p. 6r2, plate 3i, figs. 7a-b; 1898, Monographs U. S. Geol. sella confusa, Wazcorr, , 1896,
Surv., vol. 30, p. 3o, plate 3 .
In Brooksella confusa the marginal lobes do not unite at the center of the bell but join irregularly, whereas in B. alternata they radiate from the center of the disk. This fossil is found in the middle Cambrian shale of Coosa Valley, Alabama.

Brooksella rhenana Kinkelin

Kivkeins, 1903 Bericht Senclenberg Naturf. Gesell., Theil 2, p. 89, taf. I, fign. I, 2 .
An 8-lobed medusa from the middle Devonian of Ruplach. Only one specimen, showing its exumbrella, was found, and this appears to me to be identical with, or at any rate very closely related to, Walcott's Brooksella alternata.

APPENDIX.

PREOCCUPIED GENERIC NAMES.

The establishment of the International Commission upon Zoological Nomenclature and the general recognition which the code that controls its decisions has won for itself amon naturalists makes it more than ever desirable that the validity of the generic names we now use should be firmly established. Accordingly, the tenability of each and every generic name adopted in this work has been made the subject of a thorough search, and I am somewhat surprised to find that certain names which have been used for generations without question of their priority are actually preoccupied for other groups of animals and can not be applied were printed. A list of the generic names which can not be applied to meduse follows:

Corynitis (page 7r, Vol. I) $=$ Linvillea nom. nov.

Both Corynitis and Corynetes are preoccupied, the former having been applied to Arachnids in 1854, and the latter to Coleoptera by Herbst, 1792. Wagner's Plotocnide is vaguely described and figured, but it appears to me to be a Protzara, and Browne's 1 zaricodon, while to this genus a new name, and I propose Linvillea in honor of Dr. Henry R. Linville, who found the hydroid. The type species is therefore Linvillea agassizii.

$$
\text { Slabberia (page 73, Vol. I) }=\text { Dipurena. }
$$

Slabberia is preoccupied by Oken, 1815 (Lehrbuch der Naturgesch., Theil 3, Zool., p. 828), for Slabber's Medusa marina, which is an Obelia and therefore wholly different from the medusa to which the naberia in the sense I have used it and substitute for it the generic name Dipurena McCrady, 1857.

Turris and Tiara $=$ Clavula

Both \mathcal{T} urris and \mathcal{T} iara are preoccupied and can not be used for medusæ. The name Clavula may be applied to these medusx, as has been explained on page 491, Volume II.

```
modicea (see page 20I, Vol. I)
```

According to L. Agassiz, 1842-46, Nomenclator Zoologicus, the generic name Laodicea was used by Lamouroux, 18i6, Hist. Polypiers Coralligenes, and this statement of Agassiz's is copied in Scudder's Universal Index to Genera in Zoology, 1882, p. 167. Upon referring to Lamoroux's work, however, I can not discover that he used the name Laodicea, and believe that Agassiz is mistaken, and that Laodicea of Lesson, 1843, may be retained for medusx. Laodice is preoccupied, having been used by Gemminger, 187 r , for Coleoptera, before Haecke 1879, applied it to medusæ, but this does not interfere with the use of Laodicea. Indeed sever Amalthaea yet the latter, differing as it dos by ar anple, Amalthea lakes preceden Chrysaor takes precedence over Chrysaora, yet both may be used.

Maas, 1900 (Abhandl. Math. phys. Klasse der K. Bayer. Akad. der Wissenschaft, Mün chen, Suppl. Bd. I, Abhandl. 8), gives a description of 23 hydromedusæ from Japan obtained upon Doflein's voyage.

The old species are Cytais vulgaris, Ti ara papua, Proboscidactyla favicirrata var. stolonifera, Spirocodon saltatrix, Eucheilota paradoxica, Phialidium pacifccum, Phialidium discoida Mesonema pensile, Gonionemus vertens var. depressum, Olindioides formosa, Liriope rosacea Rhopalonema velatum, Aglaura hemis peregrina, and Solmaris rhodoloma.

The new forms are called Sarsia japonica, Nemopsis dofeini, Turritopsis nutricula var It is interesting that Eucheilota paradoxica, known hitherto only from the Florida-Bahama region, should be reported from Japan.
One of the most valuable features of Maas's paper is his redescription, accompanied by an excellent account of the post-embryonic development of Spirocodon saltatrix. Reviews of hi account of this, and of the new forms, are presented in this Appendix.

An important paper upon Arctic Hydromedusæ and Scyphomedusæ is that of Hartlaub, Croisière Océanographique Belgica dans la Mer du Grönland, Meduses, 18 pp., planches 76 -77. Unfortunately this has reached me too late to be reviewed for this work

$$
\text { Peanaria tiarella (see page } 25 \text {, Vol. I). }
$$

Pernaria tiarella, Harcirt, G. T., 1909, Bull. Mus. Comp. Zool. at Harvard Coliege, vol. 53 , P. 164, 5 plates, 44 figs.
Hargitt studies the development of Pennaria tiarella and finds that the oöcyte nucleus dissolves within the germinative vesicle before the nuclear membrane is ruptured. The linine network of the germinative vesicle extends to the nucleolus, so that an interchange of substances may possibly occur between the chromatin and the nucleolus.
The two polar bodies appear to be formed at about the time of the liberation of the medusa by a process of mitosis of which Hargitt gives a detailed account.

Fertilization usually occurs after the polar bodies have been formed. The cytoplasm is very active at this time, forming protuberances upon the surface of the egg. The male and female pronuclei unite by apposition.

The first cleavage spindle seems to form from the cytoplasm. The cytoplasmic division is delayed, the second nuclear division being completed before the first cleavage furrow has cut half through the egg.

Hargitt disagrees with Beckwith, rgog, and finds that the polar bodies are seen only at or near the time of the liberation of the medusæ, about $7 \mathrm{p} . \mathrm{m}$. He also finds, contrary to Beck nuclear membrane, whereas Beckwith states that it is cast out into the cytoplasm.

Corymorpha nutans (see page 3r, Vol. I).
Corymorpha nutans, MaLaRd, 1907, Bull. Museum Paris, p. 563.-Torrex, r907, Science, vol. 25, P. 734.
Malard finds Corymorpha nutans when dredging in deep water northeast of the Ile Tatihou, coast of France, and Torrey observes spontaneous fission in the stems of the hydroid.

$$
\text { Sarsia rosaria (see page } 59, \text { Vol. I). }
$$

Sarsia rosarria, Kıshinourie, y9ro, Journ. College of Sci., Tokyo, vol. 27, art. 9, P. 24.
Kishinouye finds this medusa off the Kurile Islands, north of Japan. A. Agassiz records from the Pacific coast of North America

Sarsia japonica Maas.

Sarsia japorica, Meas, ryog, Abhandl. Akad. Wissen., München, Suppl. Bd. x, Abhandl. 8, p. 6, taf. 1, fig. y.
Bell 12 to 15 mm . high, 4 to 6 mm . wide, with flatly rounded apex. Bell walls 2 mm . thick. Manubrium nearly cylindrical, four-fifths to five-sixths as long as the depth of the bellthick. Manubrium nearly cylindrical, four-fifths to five-sixth Gonads scattered irregularly over the manubrium from the base to near the mouth.

Tentacle-bulbs large pyramidal, without ocelli and without nettling warts. Tentacles tapering, shorter than bell-height when contracted, their proximal parts with scattered nematocysts, and distal two-thirds with ring-like nettle-batteries. 4 straight, slender radial-canals without an axial-colorless. From Todohokke and Hokkaido, Japan. Hydroid unknown. It is probably an Arctic form.

It is distinguished from S. resplendens and S. brachygaster by having no ocelli, and from S. apicula by having no axial-canal and by its bluntly rounded apex. Its nearest relative is S. flammea, with which, indeed, it may prove to be identical.

Eleutheria (see page 93, Vol. I).
Eleutheria, Banf, root, Das Seewasee-Aquarium, Magdeburg, 2 fign.-Krumpack, 1907, Beitrage zur Kenntraiss der Medusa
Eleutheria, Breslau, 47 pp.
Krumbach gives a detailed account of Eleutheria. Unfortunately I have not seen his paper and am unable to review it.

Cladonema radiatum (see page 99, Vol. I).
Cladonema radiatum, Brinder, y908, Bull. Muséum, Paris, p. 385 .-Richtrrs, 1908, Zool. Anzeiger, Bd. 33, p. 687
Binder gives a good description of the hydroid from the Atlantic coast of France, and Richters records it from Helgoland, German Ocean.

Bell 17 mm . high, 15 mm . wide, globular with very thick walls. Numerous meridiona bands of nematocysts arranged more or less definitely in 4 perradial groups. There are 4 interradial, hollow spaces between the exumbrella and Kishinouye's description is lacking in detail and his figures only add to my confusion respecting the nature of these spaces. Are they entirely cut off from the gastrovascular system? "The radial-canals have many minute processes on the aboral side.

There are 4 tapering tentacles longer than bell-height and with numerous, short, capped filaments on all sides. Each tentacle with an abaxial ocellus at its base. Mouth with 4 tri angular lips. The gonads are 4 pouches hanging down from the horizontal parts of the radial canals near the stomach. Each gland is broadest at its andal.extemey

This remarkable medusa is so briefly described and figured that I can not venture to its eneric characters. Kishinouye states that it is one of the Cladonemidæ. From Japan and Saghalin Island. Kuno in Suruga Bay, Japan.

Turritopsis pacifica Maas.

Turritopsis nutricela var. pacifca, Weas,
fig. 9
Bell of adult medusa 8109 mm . high, 5 to 6 mm . wide. This form is distinguished by the number and arrangement of its tentacles, 120 to 150 of which arise, not in a single row, as in the Atlantic Turritopsis, but in 3 or even 4 rows, one above the other; the number of rows increases with age. The tentacles are tapering, their entoderm chordate, and each has a small, projecting ocellus on the abaxial side of its swollen bub, whereas che ocelli of the
Atlantic T urritopsis nutricula are on the axial (inner) sides of the tentacles. There are 4 Atlantic Turritopsis nutricula are on the axial (inner) sides of the tentacles. There are 4
diffuse interradial gonads. The manubrium and radial-canals are as in T. nutricula. Gonads diffuse interradial gonads. The manubrium and radial-canals are as in \mathcal{F}. nutricula. Gonads Bay near Misaki, Japan, in Ociober

This form differs so markedly from the American medusa that we may safely call it a distinct species.
Rathkea octopunctata (see pages 175, 177, Vol. I)
$C_{\text {yrtais octopunctata, Markow, y908, Zool. Anzeiger, Bd. 33, }}$ 33, P. 664
Markow finds that this medusa is very abundant near Sebastopol between February and April, from the surface to a depth of not more than 7 feet. Budding meduse were abundant from January 27 to February 12 in water of 6.1° to $6.9^{\circ} \mathrm{C}$. The rediscovery of this medusa in such abundance in the black Sea makes it practically certain that wores and and Branc, branched oral tentacles, but this is evidently a mistake.

Rathrea octopunictata var. grata (see page 179, Vol. I).
Lizzia shimiko, Kishinvourr, rgro, Jourral College of Sci., Tokyo, vol. 27, art. 9, p. 25, plate 5, fig. 24 .
I believe this to be identical with the Arctic variety of R. octopunctata, commonly called R. grata. Kishinouye found it to be quite common in winter at Misaki, Hamana Inlet, and in Omura Bay, Japan. He says that the bell is 2 mm . wide and that the 8 basal bulbs are red and each gives rise to 3 or 4 tentacles. The manubrium and medusa-buds are pinkish. Kishinouye's description and figure might equally well have been derived from a study of R. octopunctata var. grata, from our Massachusetts coast, the Japanese and Amican medusæ apparently being identical in all respects.

The medusa is so abundant in Japan that it has received the vulgar name "shimiko."

Nemopsis doffeini Maas.

Nemopsis doffeizi;, MAAs, ryog, Abhandl. Akad. Wissen, München, Suppl. Bd. I, Abhandl. 8, p. If, taf. I, fign. 4 und 5

It is probable that Nemopsis dofeini Maas is identical with Favonia nipponica Kishinouye and that the pair of small median tentacles of each perradial cluster was lost in the 9 preserve specimens studied by Mas. These are very brittle and are often lost in large specimens of the American Nemopsis, especially after preservation in formalin. Kishinouye finds that the closely crowded row. The appearance of two rows is often due to contraction in a single, ing. Bearing these differences in mind I present the descriptions of both authors in order that they may be compared in detail.

	Nemopsis dofleini.	Nemopsis "nipponica,"
Size in mm.	20 to 22 high, Iz to 15 wide.	17 high, 15 wide.
Shape of bell.	4 -sided, prismatic with fatly rounded apex and thick walls.	As in N. dofemi.
Shape of tentacular epaulet from which each group of marginal tentacles arises.	Cleft in the middle. The two halves wingshaped.	As in N. dofeini.
Number of tentacles in each perradial marginal cluster.	40 to 60 , simple, tapering, set in one row. Tentacles shorter than bell-height. No median clavate pair of tentacles observed. Ocelli at the tentacle bases.	About 50 in two rows. A median pair of small clavate tentacles. Ocelli at tentacle bases.
Number of dichotomous branchings of the oral tentacles.	5 to 7 .	About 10 times.
Size and shape of gonads.	In the form of a double fold along the radialcanals almost reaching the ring-canal. A perradial separation between each half of each gonad.	As in N. dofeini but shorter, being, however, more than half as long as radial-canals.
Color.	Stomach, gonads, and tentacle-bulbs yellowish, ocelli dark brown.	Tentacle-bulbs and lips orange, ocelli brown. Male gonads bluish, female pale yellowish.
Where found.	Bay of Tokyo, Japan.	Bays of Tokyo and Mikawa, very abundant in spring.

Willsia pacifica Maas

Willia pacificca, Mass, ryog, Abband. Akad. Wissen., München, Suppl. Bd. r, Abhandl. 8, p. 17, taf. 3, fig. 16.
Bell flat, 2 to 3 mm . high, 5 to 7 mm . wide; 6 regularly spaced radial-canals arise from the stomach and branch so that about $6 \times_{18}$ terminal canals reach the bell-margin. Manu brium flat, 6 -sided, with 6 complexly-folded lips. 96 to 108 tentacles as numerous as the terminal branches of the radial-canals. 96 to 108 short, narrow nettling streaks upon the exumbrella, alternating wiih the tentacles. No ocelli. Ring-canal rudimentary. Color (?) Coast of Japan in September. One specimen.

Polyorchis karafutonsis Kishinouye

Polyorchis karafuttoensis, Kississouxz, y9ro, Journal College of Sci., University Tokyo, vol. 27, art. 9, p. 30, plate 5, fig. 3r.
This medusa differs from Polyorchis penicillata in its greater size, being 60 mm . high and 50 mm . wide. Also its gonads are dichotomously branched, many of the marginal tentacles re forked, and the ring-canal gives off centripetal branches.

There are about 40 gonads, io on each radial-canal, and these are longer than the manubrium, which latter is of the size and shape seen in P. penicillata. There are about 120 margina
entacles, said to arise in several rows from the bell-margin. Each of the 4 radial-canals gives off from 14 to 16 long, lateral branches which branch at their outer ends but do not anastomose. Many short, usually unbranched, centripetal canals arise from the ring-canal and end blindly.

A single specimen was obtained at Korsakoff, Saghalin Island, on September 19, 1906.
In the character of its canal-system this medusa is intermediate between Polyorchis and Spirocodon, but the bell-margin is simple, not cleft into lappets; and the tentacles are spaced at equal distances apart around the margin.

Spirocodon saltatrix Tilesius (see page 220, Vol. I).
Spircocodon saltatrix, MaAs, 1909, Abhandl. Akad. Wissen., München, Suppl. Bd. I, Abbandil. 8, P. 18, taf. 2, fign. 10-1 3 .
Maas gives by far the best published description of this medusa and corrects several rrors of former students, especially in respect to the character of the gonads.
When the bell is only 12 mm . high and 5 mm . wide, with high, slightly bulging sides and dome-like apex, the gelatinous substance is thick, being thicker in the perradii than in the 8 adradii. The circular muscles of the subumbrella are entire. There are 8 clusters, each with about 20 tapering tentacles. The stomach is a long, simple tube with 4 distinct lips

 grown medusa, showing one of the gonads. C, full-grown medusa, tentacles
which are at a level about one-eighth of the height of the bell-cavity above the margin of the bell. There is a well-developed peduncle above the stomach. The 4 radial-canals each give off about 20 branched but non-anastomosing side branches in the subumbrella. Over the peduncle the canals do not branch. There is a ring-canal with 4 short interradial, branched
blindly ending centripetal canals. In this young stage the gonads are not apparent.

The gonads begin to develop along the 4 radial-canals on the peduncle close to of the stomach when the medusa is about 18 mm . high and 15 mm . wide (see text-figure 426A). The radial-canals at this point begin to elongate more rapidly than the portion of the peduncle upon which they lie, and thus they begin to loop outward into the subumbrella cavity. Finally these freely-projecting canals twist spirally and hang downward into the bellcavity, the canal extending around the free edge of a mesentery (figs. 426 B and c). In later stages the bell-margin develops 8 indentations, 4 perradial and 4 interradial, with 8 adradial convexities between. The 8 clusters of tentacles of the young medusa spread laterally as new entacles develop, until finally the tentacles become congruous entirely around the bell-margin of Tokyo and Sagami, Japan. The largest were 40 mm . high and 30 mm . wide According to Maas the 4 interradial vessels are the only blindly ending cand arise from the ring-canal, this being contrary to the observations of other authors.

```
Obelia congdoni Hargitt (see page 248, Vol. II)
```

Obelia hyalina, Congdonr, 1907, Proc. American Acad. Arts and Sci., Boston, vol. 42, p. 468 , figs. $7-9$.
Obelia congdoni, Harcurr, C. W., 1909, Biol. Bulletin, Woods Hole, vol. 17, P. 375.
Hargitt believes this to be specifically distinct from O. hyalina Clarke. The branches of the stem do not arise in the axils of the hydrothecæ as in O. hyalina. The gonangia are larger, being about 4 times the length of the hydrothecx, and the opening is not simple, but there is a neck with everted rim. Moreover, the colony is 20 to 30 mm . high and profusely branched instead of being about 12 mm . high and but little branched. The newly liberated medusa has 24 tentacles, but within to or 12 hours it has 30 to 36 . The hydroid is found upon drifting Sargassum and is a tropical form.

Staurophora mertensii (see page 29r, Vol. II).
Staurophora discoidea, Kishinouye, ryro, Journal College of Sci, Univ. of Tokyo, vol. 27, art. 9, p. 29
Kishinouye describes this medusa from Japan and Saghalin Island. I believe it to be identical with S. mertensii. He states that it closely resembles S. mertensii, but that there are about 30 folds on each side of a limb of the gastric cross, instead of $I 7$ as in S. mertensii. Staurophora: they afford therefore an insufficiently definite criterion uge which to base specific distinctions.
Scolionema gemmiferra, Kıssinvocre, iq1o, Cubaia gemmifera.
Thi
This appears to be an immature Cubaia. The largest of Kishinouye's specimens was 4 mm . Wide and medusiform buds were beginning to develop upon its gonads. The distal ends of the tentacles beyond the adhesive disks are longer than in any species of this genus 8 were with "suckers" manubrium is light red with brown mouth. Of the 16 tentacles, 8 were with "suckers" and 8 smaller ones were without them. 8 lithocysts. Entoderm at base of tentacles greenish and in the distal parts reddish. Found at Misaki, Japan, in winter.

Craspedacusta sowerbii Lankester (see page 363 , Vol. II)

sspedacusta soverriii, Decisions of International Commission on Zool. Nomenclature, rgio, Science, vol. 3r, p. 150
The International Commission on Zoological Nomenclature publishes its unanimous ecision that the name of this medusa is Craspedacusta sowerbii Lankester, not Limnocodium victoria Allman.

Microhydra ryderi, Goertre, 1908, Mitt. philomath. Gesell., Strassburg, Bd. 4, Jahrg. 16, P. 35, I taf.
Goette records the finding of this hydroid in the neighborhood of Strassburg. Hitherto it has been known only from Tacony Creek near Philadelphia. Unfortunately I have no been able to see his paper.

Genus Limnocnida (see page 370, Vol. II).

Limnocrida, Gravire, , yo8, La Méduse du Tanganyika et du Victoria Nyanza. Sa dispersion en Afrique, Résult. Scientifques
Gravier gives an account of the dispersion of this genus in Central Africa.
Ægina citrea (see page 45r, Vol. II).
Egina pentamera, Kishinouye, 19ro, Journ. College of Sci., Tokyo, vol. 27, art. 9, p. 32, plate 5 , fig. 34
This is a 5 -rayed Egina citrea $^{\text {from Misaki and Suruga, Japan, in winter. Vanhöffen }}$ 1908, called attention to the frequent occurrence of 5 -rayed aberrations of $\not \subset$ gina. Kishinouye's medusa is about 20 mm . wide and 10 mm . high, with thick gelatinous bell having a flat top and sloping sides. The mouth is a simple round opening and the io genital sacs
are nearly quadrate. The 5 tentacles are each about twice as long as the bell-radius. Color (?)

SCYPHOMEDUSE.

Cryblea rastonii (see pase 508 , Vol. III)

Charybdea mora, Kishinourx, , giro, Journ. College of Sci., Univ. of Tokyo, vol. 27, art. 9, p. 6, plate I, igss. 4-
This form from Japan appears to be identical with C. rastoniz of the Pacific. It may possibly be distinguished, however, as a local variety by the large nettling warts over it exumbrella and its relatively long pedalia, these being about two-ffifths as long as the heigh of the umbrella. I have, however, seen specimens of C. rastonii with pedalia one-third a long as the bell-height.

Carybdea alata (see page 508 , Vol. III)

Tamoya virulenta, Kissinourre, rgio, Journal College of Sci., University Tokyo, vol. 27, art. 9, p. 6, plate I, figs. 4-9.
This form, from the Inland Sea of Japan, is apparently identical with C. alata. Kish inouye describes large specimens 100 mm . high and 60 mm . wide. He finds from 6 to 8 dendritic velar canals in each quadrant, whereas I have not seen more than 6 in specimens of C. alata. A variation of this sort may be expected, however, in specimens of such great size as those found by Kishinouye.

Haliclystus octoradiatus (see page 534 , Vol. III)

Wietrzykowski gives the best account yet published of the early stages of Haliclystus The planula is about 116μ long, 18μ wide. The ectoderm forms a continuous sàc of flat hexagonal cells, apparently without cilia. There are generally about 16 entodermal cell arranged in a single row. After I to 4 days of free life, the planulx settle down upon their anterior ends and become hemispherical. They are apt to settle down in clusters and breaks through by the perforation of the ectodermal sac at the summit of the larva. The larva then gradually becomes vaguely 4 -lobed and about 150μ in diameter, and a tentacula form bud develops at the summit of each of the 4 lobes. These buds become detached and resemble the original planula, which developed from the egg, and go through developmental stages similar to those of the mother-larva, fixing themselves by their anterior ends and in turn giving rise to buds, as did their mother.
At the time of formation of the primary buds, one sees a well-developed invagination of glandular character at the center of the adherent surface of the larva. This is the beginning of the pedal zone. The body then elongates, becoming filiform, and then 2 tentacles, 180 apart and exactly similar in structure to the knobbed tentacles of the adult, develop on opposite
sides of the mouth. The hypostome then elongates. This stage, with iwo well-developed tentacles and the hypostome, persists for several days.
A third tentacle similar to the first two then develops and the three tentacles set themselves 120° apart, giving the polyp a triradial symmetry. Finally, a fourth tentacle develop France, where these studies were undertaken by Wietrzykowski.

Genus Thaumatoscyphus Kishinouya, r9xo

haumatoscyphus, Kıshinourxx, igro, Journ. College of Sci., Tokyo, vol. 27, art. 9, p. 2
The type species is Thaumatoscyphus distinctus Kishinouye, from the most northeastern island of Chishima, Kurile Islands, Japan.
generic characters.
Stauromedusæ closely allied to Haliclystus and Stenoscyphus, but with a unitary coronal muscle in the exumbrella; with rudimentary adradial lobes and small, non-adhesive perradia and interradial tentacles. 4 interradial pits in the subumbrella. Peduncle 4 -chambered 8 adradial gonads. Gastric cavity as in Eleutherocarpidæ.
This genus is distinguished from all other Stauromedusx by its exumbrella coronal muscle This structure is so remarkable, being unknown in any other Scyphomedusæ, that its existence Kishinouye observes and believes to be the outlines of strands of muscle fibers. He cut sections.

Thaumatoscyphus distinctus, Kishinouyr, rgio, Journ. College of Sci., Tokyo, vol. 27, art. 9, P. 2, plate I, figs. I and 2.
Body goblet-shaped, 30 mm . high. Calyx 15 mm . wide and half as high as height of entire animal. 8 short, adradial lobes, each with about 40 short, captate tentacles growing in a lanceolate tract on the aboral side of each lobe. The tentacles in the proximal part of the stalks serve as adhesive organs.

The 8 perradial and interradial tentacles are small, cylindrical, and without well-developed distal knobs, although their ends are captate with a median depression at the tip. Thes entacles bear black pioment at their bases and ang the mian They are not adhesive organs. The peduncle is more or less quadrate, about as long as the calyx and 4 times long as wide. It is 4 -chambered
Four deep, interradial infundibula in the subumbrella. The subumbrella is beset wit arge, spherical, wart-like clusters of nematocysts, those near the margin and middle parts The coronal muscle is a broad, undivided band, the greater part of which is said to lie in the exumbrella beyond the clusters of tentacles. 4 broad but weakly developed per adial areas of radial muscles extend from the pyloric region through the stomach wall. The interradial muscles are better developed and extend from the aboral end of the peduncle to mbshich two shor The esophaus is short,
The 4 lips are folded. The central stomach-cavity is long with deep longitudinal folds adradial rows of simple, long, gastric cirri. There are 8 adradial lanceolate gonads, each conisting of 7 or 8 oblong follicles. The abaxial surface of each gonad is black and can be seen hrough the translucent wall of the body.

Two specimens found in August, 1903, from Shimushiri, Kurile Islands, Japan.
Unfortunately Kishinouye appears to have cut no sections and he bases his statement of the existence of an exumbrella coronal muscle upon the presence of annular folds in the in the killing fluid. He studied two preserved specimens well be due to unnatural contraction exist, the medusa may still be called Thaumatoscyphus for it is distinuished from Stenos not by its adradial lobes, and from Haliclystus by having 4 subgenital pits in its subumbrella.

Parumbrosa, Kissinouve, rgro, Journ. College of Sci., Uniiv. Tokyo, vol. 27, art. 9, p. ig.
The type species is Parumbrosa polylobata Kishinouye from Toyama Bay, Japan.

generic characters.

Ulmaridx similar to the genus Discomedusa, but with 64 marginal lappets instead of 32 . This genus is evidently derived from Discomedusa by the bifurcation of its marginal lappets.

Parumbrosa polylobata Kishinouye.
Parumbrosa polylabata, Kishinouyr, rqio, Journ. College of Sci., Univ. Tokyo, vol. 27, art. 9, p. 19, plate 4, fgs. 20-23.
Bell 160 mm . in diameter, flat, about 4 times as wide as high. Gelatinous substance of delicate consistency. Exumbrella finely and uniformly graduated. 64 narrow, lanceolate, pointed marginal lappets. 6 velar lobes between every 2 divergent ocular lobes. The velar lobes are 3 times as long as wide, but the ocular lobes are only about half as long as the velar common basal projection whide. Each pair of ocular lobes is, however, mounted a lobes. There are 24 tentacles and 8 sense-organs
arranged so that 2 marginal lappets are placed arranged so that 2 marginal lappets are placed between a tentacle and a sense-organ or between are the longest. There are powerful muscle fibers on the axial side and transverse bands of nematocysts on the abaxial side of each tentacle.

The subumbrella is nearly smooth with weakly developed muscles. The canal-system is as in Discomedusa philippina (see page 607) except that the perradial and interradial canals are less complex in their branching and there is but a single,

Frc. 428. .-Parumbrosas polyobacaa. After Kishinouye, in each lappet, instead of two as in D. philippina. D. philippina may, indeed, be only the young of P. polylobata, and later the 32 lappets may divide to form 64 . The large size of the gonads and complex branching of the interradial and perradial canals in D. philippina, however, cause me to hesitate before drawing this conclusion. The bluntly rounded lappets of D. philippina are also very different in shape from the long pointed ones of P. polylobata. In any, event P. polylobata was evidently derived philogenetically if not ontogenetically from some such medusa as D. philippina.

The eesophagus of P. polylobata is about as long as the bell-radius, is 4 -sided and prismatic, and the richly folded, lanceolate lips are as long as the mouth-tube. They are thick and keeled along the midrib, and their margins bear numerous minute filaments. The 4 long, s colorless and nearly transparent. It was found in large numbers in a haul of a shrimp-trawl in Toyama Bay, Japan, in June, 1907, from a depth of about 65 fathoms.

Kishinouye gives excellent figures of the medusa.

FOSSIL MEDUSA

Ephyropsites jurassicus von Ammon

isites jurassicuss, von Ansoon, 1908, Geonostischen Jahresheft, 1906, Jahrg. 19, P. 169, taf. 3, 2 fign.
This is one of the Coronatce closely allied to Nausithoë. It is from the Upper Jurassic limestone of Pfalzpaint. Bell 150 mm . wide with a distinct annular furrow and a pedal zone 40 mm . wide. 8 tentacles and 8 rhopalia. 16 pedalia in the radii of the tentacles and senseorgans. The tentacular pedalia are twice as wide at the zone of the tentacles as the rhopalar pedalia. A median ridge upon each pedalium, and near the margin on the rhopalar pedalia the inner end of each radiating ridge. There are ring muscles in the subumbrella. A single impression of this medusa was studied by von Ammon.

Lndex to Volume III

```
calepha deperdita, 715
Acraspedæ, 499
Acraspedites antiquus,7Iठ
Agassiz, Alexander, acknowledgment to, 499
Agelacrinus lindstromi, 717
Appendix, 7rg
cadomyaria, 634
    aurosa, 7I2
        primordialis,712
Archirihizidæ, 633
Astylospongia radiata, 715
Atolla, 56I
    achunis, 566
    bairdii, 563
        forma valdivic, 565
        huni,}56
        igantea,}5
        wyvillei, 560
            forma verrillii, 567
Atollidx, 56%
Atollites minor, 716
    ella, 567
        subglobosa,568
        vanhoffeni, 568
Atorellida,,54I, 567
Aurelia, 619
        clausa, 628
        cœerulea, }62
        olpota, 623
        cruciata, 623
        dubia, 623,627
        habanensis, 623
        aponica, 623
        laponica, 62,
    mbata,}62
    maldivensis,629
    ex-ovalis,}62
    solida, 627
    vitiana, 623
Aurellia, 6Ig
aurita,62
        forma marginalis, 627
        dubia, 627
        flavidula,623
    labiata, 628
maldivensis,620
```


Aurellia solida, 627 water-content of, 622 Auricoma
 Auricoma, 610 Aur.sa 630
 furcata, 630
 Bathotrephis asteroides, 717
 Bathyluca solaris, 585
 Biblis, 6ig
 Brachiolophus, 709
 Brooksella a alternata, 7×8

 confusa, 718
 rhenana, 78
rhenana, 718

Budding in Cyanea, 599; Tæniolhydra roscoffen sis, 622; Cassiopea, 643; Cotylorhiza, 662,
Calicinaria cyathiformis, 524
Callinema, 612
ornata, 616
ornata,
Cannorhiza, 713
Cannorhiza,
connexa, 7 II
Cannostomites multicirrata, 7×6
Capria, 521,539
sturdzii 539
Carybdea, 505,50
Carybdea, 505,506
reactions to light, 509
alata, $508,570,726$
var. grandis, $5 I I$
var. moseri, 5 I2
var. pyramis, $5 I I$
aurif
haplonema, 513
marsupialis, 50%
marsupialis, 507
murrayana, 5 I2
marrayana, 512
rastonii, 508, 726
xaymacana, 509
Carybdeida, 501,504
Carduella, 523
Carauella, 523
Cassiopea, 636
andromeda, 637
var. acyclobbia, 640
var. malayensis, 639
var. maldivensis, 639
var. zanzibarica, 639
anglica, 703
borbonica, 65
borlasea, 703
canariensis, 659
corallifora, 659
depressa, 649
var. picta, 649
dieuphila, 636
forskalca, 637

Cassiopea frondosa, 64I, 647 lunulata, 703
mertensii, 649 mertensiii, 649
ndrosia, 650
ornata, 648
var. digitala, 648
pallasii, 647
picta, 649 .
polypoides; 640
thizostomoidea, 703
heophila, 636
xamachana, 64
Cassiopeid $x, 633$
Cassiopeja acycloblia, 640
andromeda var. cyclobalia, 640
mertensii var. ndrosia, 650
Catostylidæ, 633
Catostylus, 664
cruciatus, 667
mosaicus, 666
ornatellus, 670
orsinin, 669

orsinl,
palmipes

palmipes, 667
purpurus, 67 I
stiphropterus, 670

tagi, 668
tripterus,
then
turgescens, 67
turgescens,
viridescens, 670
$\stackrel{\text { wilkesii, }}{ } 666$
ephea, 65 I
aldrovandi, 699
capensis, 703
cephea, 654
var. conifera, 655
var. dumokuroa, 65
conifera, 654,655
cyclophora, 652
dumokuroa, 656
forskalea, 654
fusca, 654
mosaica, 666
ocellata, 680
octostyla, 652
var. carulescens, 653
papua, 678
papua, $\begin{aligned} & \text { papis, } 678 \\ & \text { polychroma, } 659\end{aligned}$
polychroma, 659
rhizostoma, 710
rhizostomoidea, 654
tuberculata, 659
typhlodendrium, 658
vesiculosa, 663
wagneri, 659
epheidx, 663,650
Cepheidx,
Charybdea, 506
arborifera, 508
hyacinthina, ${ }^{\prime \prime}{ }_{544}$
mora, 726
moseri, 512
mora, ${ }^{\text {moseri, }}$ 512

Charybdea obeliscus, $5{ }^{1}$
philippina, 512
Chemical composition of Cyanea, 600; Aurellia
Chemical
626
Chirodropus, 505, 5
gorilla, 5I8
palmatus, 51
palmatus, 519
Chiropsalmus, 505, 515
Ciropsalmus, 505,515
buiterdijiki, 575
quadrigatus, 516
quadrumanus, 515
zygonema, 517
Chrysaora, 577
Chrysaora, 577
aspilonota, 579
blossevillei, 58 I
blossevileet, 581
calliparea, 5^{82}
chinensis, 582
convoluta, 58 r
cyclonata, 579
(dodecabostrycha) dubia,
546
(docecabostry
fulgida, 5 I
graudichaudii,
593
gaudichaudii, 593
gilberti, 582
helvola, $58 I$
var. calliparea, 582
eptanema, 579
hysoscella, 579
var. blossevillei, 58 I
ossevillei var. plocamia, 58 I
isosceles, 579
lactea, 583
actea, 583
macrogona, 579
mediterranea, 579
mediterranea,
melanaster, 582
var. gilberti, 582
pleurophora, 579
plocamia, 58 r
(polybostrycha) helvola, $5^{8 I}$
spilhemigona, 579
spilogona, 579
Cladonema radiatum, 721
Claustra, 619
Cleistocarpidea, 519
oring matter, chemical composition of: in
Pelagia, 572; Cyanea, 600; Cassiopea, 637
Collaspis, $56 \mathrm{I}^{2}$
achillis, 566
Commensal plant cells in Scyphomedusx: Cassiopea, $637,643,64$
Catostylus, 665,667
Commensalism between Scyphomeduse and fishes: Sanderia, 59; ; Cyanea, 609; Cotylorhiza, 663; Catostylus, 667
Commensalism between Scyphomedusx and shrimp:
Ceronata, 54 I

Coronata, 501, $54 T$
Corymorpha nutans, 720
orynitis $=$ Linvillea, 7
ambulacrata, 66 borbonica, 659
tuberculata,
Couthouya
59
Couthouya, 59 x
gaudichaudi,
593
gaudichaudi,
Couthouyia, 599
pendula, 593
Crambessa, 664
cruciata, 667
mosaica, 666
palmipes, 667
pictonum, 668
stiphroptera, 670
stuhlmanni, 669
tagi, 668
triptera,
67
${ }_{\substack{\text { triptera, } \\ \text { viridescens, } \\ \text { 670 }}}$
Crambione, 676
cookii, 677
mastigophora, 676
Cramborhiza, 672
flagellata, 673
spedacusta sowerbii, 725
Craspedotella, 499
Craterlophus, 521, 53
macrocystis, 538
tethys, 538
Cossostoma
,
Crossostoma, 685
anadyomene, 686
anadyomene, 686
Crystals in ectoderm of Nausithoë,
555
Cubaia gemmifera, 725
Cubomedusa, 504
Cyaneá, 595
arctica, $59 \mathrm{I}, 596,59$
behringiana, 596
calliparea, 582
var. fulva, 600
var. nozakiii, 601
var. versicolor 600
var. versicolor, 600
itrea, 597
erruginea, 596,597
fulva, $596,597,600$
imporcata, 597
lamarckii, 596,597
muellerianthe, 6
postelsii, 596,597
postelin,
purpura, 601
rosea 6 or
rosea, 60
Cyanea versicolor, 596, 597, 60
Cyaneida, 59 I
Cyclomyaria,
63
Cyst-formation in: Cyanea, 599; Taeniolhydra
roscoffensis, 622 .

Dactylometra, ${ }^{583}$ africana, 58
africana, 588
ferruginaster, 588
lactea, 583
longicirra
pacifica var. ferruginaster, 58
quinquecirrha, 585
var. pacifica, 589
Dactyloidites asteroides, 7 II 7
Dactyloidites asteroides,
bulbosus, 717
bulbosus, 717 ${ }^{\text {Degenerate medusæ: Stauromedusx, } 520 \text {; Aurellia, }}$
622; 1 aeniolhydra, 622
Depastrella, 523
Depastrum, $52 \mathrm{II}, 523$
cyathiforme, 524
cyathiforme,
inabai, 525
Desmonema, ${ }^{\text {inabit }}$, 525
annasethe, 601
chierchiana, 593
gaudichaudii,
gaudichaudii, 593
rosea, 60 r
Desmostoma, 6
Desmostoma, 677
gracile, 68 r
Development of: Tripedalia, 5 I4; Lucernaria, 526; Haliclystus, 534, 726; Nausithoë, 555; Linuche, $559 ;$ Pelagia, 573; 574,
Chrysaora,
577,
$581 ;$ Cyyneara, 599; Diplumaris, 6iry Aurellia, 622 , 625; Rhizostomx, 633; Cassiopea, 643; Cotylorhiza, 66I; Mastigias, 679; Phyllorhiza, 684;' Rhizostoma, 7or; Stomolophus,
710
Dianaea cyanella,
D
Dind
Diplocraspedon,
limbata 628
limbata, 628
Diplopilus couthouyi, 654
Diplulmaris, 600
Discomedusa, antob
lobata, 607
philippina, 607
Discomedusx, $54 \mathrm{I}, 56.9$
Donacostoma, 60
woodiii 604
Drymonema, 603
cordelio, 603
dalmatina, 603
dalmatina,
gorgo, 604
Edible medusx: Chiropsalmus, 517; Rhizostoma,
703; Rhopilema, 706
Eleutheria, 72 II
Eleutherocarpide, 519
Environment, effect of, upon: Dactylometra, 587;
Cyanea, 599, 600; Darkness upon Cassiopea
Ephyra, 5
prometor, 55
Ephyridx, 550
Ephyroides rotaformis, 56
Ephyropsidé, $54 \mathrm{I}, 550$

Ephyropsis, 553
Ephyropsites jurass
Eucrambessa, 677
Eucrambenssa,
mülleri, 679
Eulithota fasciculata, 7×6
Eupilema, 709
scapulare, 709
Evagora, 619
Excretory system of Atolla, 56I
Favonia sulcata, 723
$\underset{\text { nipponica, }}{ } 723$
Floresca, 605
pallada, 6
parthenia, 605
Floscula, 605
pandora, 606
promethea, 605
pculida, 604
Flosculidx,
Fossil Medusa, 7
Grafting in Cassiopea, 646
Habits of Medusx: Creeping habits of the planula of Lucernaria, 500,526 ; egg-laying and swimming habitsor, of Liruche, Cys, Cassiopea 637, 647, 648; Cotylorhiza, 66r
Heccadecomma, 6I2
ambiguum, 615
aliclystus, 521,53
antarcticus,
auricula, 53
kerguelensis, 536
octoradiatus, 534,726
salpinx,, 535
stejnegeri, 535
stejnegeri, 535
tenuis, 532
tenuis,
Halicyathus, 536
lagena, 537
Halimocyathus, $52 \mathrm{I}, 536$ lagena,
platypus, 537
$\begin{gathered}\text { platypus, } \\ \text { Halipetasus, } 657\end{gathered}$
Her
alipetasus,
scaber, 652
Haplorhiza, 733
punctata, 7×3

Hermaphroditism
rhiza, 683
Hidroticus rufus, 680
Himantostoma, 693
flagellata, 695
lorifera, 694
vař. pacifica, 695
Holigocladodes lunulatus, 703

Kuragea, 589
$=\begin{aligned} & \text { depressa, } \\ & 589\end{aligned}$

Kishinouyea,
nagatensis, 521,53
Laodicea, 719
Leonura, 696
leptura, $696^{\prime \prime}$
terminalis, 696
Leptobraichia 696
Leptobrachia,
leptopus,, 696 lorifera, 694
Leptobrachidx, 633, 691 Limnocnida, 726 Limnocodium, 725
Linerges,
aquila, 560
aquila,
draco, 560
mercurius, 55^{8}
$\stackrel{\text { pegasus, } 55^{8}}{\text { I. }}$
Linergidx, 550
Liniscus, 557
cyamopterus, 55^{8}
sandalopterus, 55^{8}
Linuche, 557
aquila, 560
unguiculata, 558
unguiculata, 558
vesiculata,
558
Linvillea, 719
Lipkea, 521, 539'
ruspoliana, 540
Lizzia shimiko,
722
Lizzia shimiko, 722
Lobocrocis blossevillei, 58I
Lobocrocis blossevile,
Lobonema, 63I, 688
smithii, 689
Loborhiza, 664
ornatella, 67
Lorifera, 693
arabica, 694^{\prime}
flagellata, 695
${ }^{\text {flagelfata, }}$ lorifera, 694
var. pacifica, 695
Lucernaria, 521, 526 auricula, $532,534,5$ australis, 530
campanulata, 530
convolutus, 530
cyathiformis, 524
fabrici,
Lucrnaria haeckeli,
infundibulum
529
kükenthali, 529
octoradiata, 534
platypus, 537 pyramidalis (?)*, 528
quadricornis, 527
quadricornis,
salpinx, 535
typica, 537
walteri, 529

Lucernosa, 526 bathyphila, 53° haeckeli, 5^{29}
kükenthali, 529 walteri, 529
y
Lychnorhiza, 672 $_{2}$
bartschi, 674
flagellata, 673
flagellata, 67
Lychnorhizidx, 633
Manania, 536 auricula, 537
Marsupialidx, 504
Mastigias, 677
gracile, 68 I
ocellata, 680
orsin
rsini, 669
pantherina, 68 I
papua, $678,68 \mathrm{I}$
var. physophora, 678
rosea, 681
papua var. siboga, 679, 680 var. siderea, 679
physophora, 678
Mastygias, 677
mulleri, 679
papua, 678
sidereã, 679
Medora, 591, 595
capensis, 5
Medusa, 619
andromeda, 637
aurita, 623
bleu, 703
cephea, 652,654
corona, 703
frondosa, 647
hysoscella, 579
marsupialis, 507
noctiluca, 572
noctiluca, 572
octopus, 703
octostyla, 652,654
panopyra, 575
pelagica, 574
pulmo, 699
stelligera,
tuber, 659
tuberculata, 659
unguiculata,
Medusina, 777
Medusina, 717
costata, $610,7 x$
deperdita, 75
geryonides, 717

princeps, 715
radiata
15

Medusites antiquus, 716
costatus, 717
costatus, 717
deperditus, 715
favosus, 715

Medusites lindströmi, 7I7 princeps, 715
radiatus, 715
Melanaster, 577
$\underset{\text { Melusinensii, } 5^{82}}{ }$
Melusina, 604
formosa, 597
Microhydra ryderi, 726
Microhydara ryderi,
Microstylus, 65 I
Monocraspedon, 6rg
Monorhiza, 682
haeckelii, 683
Myogramma speciosum, 716
Nauphanta, 553
albatrossi, 555,557
polaris, 554
vettoris pisani, 554
Nauphantopsis, 548
Nauphantopsis, 548
diomedere
548
Nausicaa, 553
phæacum, 556
Nausithoë, 553
albatrossii, 557
albida, 554 .
challengeri,
clausi, 556
marginata, 554
picta, 557
punctata, 554
rubra, 557
Nectophilema, 704
Nectophilema, 704
verrillii, 707
Nemopsis dofleini, 723
Neopelagia eximia, 590
Neopelagia eximia, 590
Nervous system of: Lucernaria, 526 ; Rhizostoma 702
Netrostoma, 651
ccerulescens, 653
dumokuroa, 656
dumpkuroa,
typhlodendrium, 658
Obelia congdoni, 725
Octogonia, 553
Orithyia lutea,
Orythia incolor, 663
Palephyra, 55I
antiqua, 551
indica, 553
pelagica, 552
primigenia, 551
Paraphyllina, 549
intermedia, 549
Paraphyllinide 54,
Paraphyllinida, 541, 548
Paraphyllites distinctus, 549,715
Parumbrose, 605,728
polylobata, 728
Patera, 604
Pelagia, 570
crassa,
576
var. sublaevis, 576
cyanella, 574,576
denticulata, 576
discoidea, 56
discoidea, 5
neglecta, 574
neglecta, 574
noctiluca, 57^{2}
var. neglecta, 574
panopyra, 575
var. placenta,
papillata, 576
papillata,
perla, 576
phosphora, 576
placenta, 575
quinquecirrha, 58
unguiculata, 558
Pelagida, 569
Pelagothuria, 499
Pennaria tiarella, 72
Pennaria tiarella
ampana, 542
uadrigata, 542
quadrigata, 542
tetralina, 542
Pericrypta, 54I
campana, 542
Periphema, 543
Peromedusx, 54
$\underset{\text { Periphylla, } 543}{\text { dodecalostrycha, } 549}$
humilis, 546
hyacinthina, 54
forma dodecalostrycha, 546
forma regina, 54

nematophora, 654
Periphyllida, 54 I
Periphyllopsis, 547
braueri, 546
Phacellophora, 612
ambigua, 613, 615
camtschatica, 613
ornata, 616
sicula, 6×3
Phanerocarpx, 499
Philogeny of Rhizostomx, 663
Phyllorhiza, 684
Pilema, 698
capense, 703
clavigera, 706
corona, 703
ctopus, 703
stylonectes, 703

Polyclonia, 636, 647 frondosa, 647
theophila, 63
Polyorchis karafutoensis, 723
Polyrhiza, 663
cephea, 654
vesiculosa, 663
Poralia, 617
rufescens, 6 I
Potta marina, 69
Preoccupied generic names, 719
Procharamma protypus, 58
Procharagma prototypus, 508
Procharybdis, 505, 506
tetraptera, 506
Procyanea, 595
Protolyellia princeps, 715
Pseudoclytia pentata
Pseudoclytia pentata, 6I9
Pseudorhiza, 682
aurosa, 682
aurosa,
haeckelii, 683
thocambaui, 678
Pulsation in: Scypho
Pulsation in: Scyphomedusx, 503; Aurellia, 620;

Radiomyaria, 634, 650
Rathkea octopunctata, 722
var. grata, 722
Regeneration in: Stauromedusæ, 522 ; Haliclys-
tus, 532; Craterlophus, 538; Cassiopea, 637
Rhacopilus, 664
cyanolobatus, 667
Rhizostoma, 698
aldrovanai,
brachyra, 692
capensis, 703
coeruleum, 703
corona,
cuvieri, 693,
609
fulgidum, 58 r
hispidum, 706
leptopus, 696
lorifera, 694
lutea, 703
pulmo, 699
var. capensis, 703

var. corona, 703 var. lutea, 703 | var. octopus, 703 |
| :--- | rosea, 68

sepioides, 703
trigona, 663
Rhizostomax, 501, 63 I
Rhizostomata, 6_{31}
dichotoma, $6_{34}, 65$ pinnata, 634, 635

Rhizostomata scapulata, 635, 697 simplicia, 635,7 r2
Rhizostomidx, 63 , 633,697
Rhizostomites admirandus, 7 I
Rhopilema, 704
esculenta, 704
hispidum, 706
rhopalophora, 704
verrillii, 707
verrucosa, 706
Sanderia, 590
malayensis, 590
Sarsia jabonica,
rosaria, 720
Scyphomeduse:
Scyphomedusie:
graphical development of,
distribution,
, graphical distribution, 50 r; reactions to
light, $509 ;$ relationship to Hydromeduse and light, 509; relation
to Actiniana, 502
Semæostomata, 569

Semwostonitites zitteli, 7 I6
Slabberia $=$ Dipurena, 7 IQ
Slabberia $=$ Dipure
Semostomx, 569
Spatangopsis costata, 777
Spirocodon saltatrix
Spirocodon saltatrix, 724
Spongicola fistularis, 553,554
Stauromeduse
Stauromedusa, 501,519
Staurophora mertensii, 725
Staurophora mertensit, 725
Steganopthalmæ, 499
Stenoptycha, 595
Stenoscyphidx, 525
Stenoscyphus, 521, 524
hexaradiatus, 5
inabai, 525
inabai, 525
mirabilis, 553,
Sthenonia, bII $^{\text {albida, }}$, ${ }_{I I}$
albida, bII 2
Sthenonine 6 (

Sthenoninae, , SII
Stings caused by medusx,

Stomolophide 63369
Stomolophus, 709
agaricus, 7 I
chunii, 7 Io
meleagris, 7 170
var. fritilaria, 7 II
Stomatonema reticulatum, $7 x$
Stylorhiza, 65I
octostyla, 652
Swarms of Medusx: Carybdea, 5II; Linuche,
559, 560; Cyanea, 6oo; Cassiopea, 643;
Cephea, 657; Catostylus, 665 , 667; StomoIophus, 7II; Haliclystus, 726
Taeniolhydra roscoffensis, 622
Tamoya, 505,512
haplonema, 513
prismatica, 513
punctata, 509

Tamoya quadrumanus, 515 virulenta, 726	
Tessera, 522 princeps, 522 typus, 523	
Tesserantha, 522	
Tesseraria, 521, 5^{52} scyphomeda, 523	
Thaumatoscyphus, 727	
distinctus, 727	
y y sanostoma,denscrispum,a	
Toreuma, 635 dieuphila, 636	
	gegenbauri, 636
	thysanostoma, 636
roseus, 681 tripterus, 671	
Tripedalia, 505, 513	
Iurritopsis nutricola var. pacifca, 7^{22} pacifica, 722	
Ulmaris, 606, 608	
	prototypus, 607, 609
UImaropsis, 609 antarctica, 6ro	
	drygalskii, 6io
Umbrosa, 606	
lobata, 607	
Undosa, 608	
undulata, 609	
	Urashimea globosa, 722
	macrotentaculata, 722
	tica marina, 579

$$
\begin{aligned}
& \text { Urtica marina, } 579 \\
& \text { Urtica marina-octopedalis, } 703
\end{aligned}
$$

Variations in Medusx: Lucernaria, 530 ; Hali clystus, 534; Craterlophus, 538; Dactylo metra, 583,584 ; Sanderia, 591 ; Aurellia
Versura, 685
anad yomene, 686
maasi 687
maasi, 687
palmata, 685
pinnata, 686
pinnata, 686
vesicata, 686
Willsia pacifica, 723
Zonephyra, 55I corona, 57 I pelagica, 552
zonaria, 552

[^0]:

