Report of RV Ronald H. Brown Cruise 06-03 to the Western Subtropical and Tropical North Atlantic 10 April to 30 April, 2006

This report was prepared by Peter Wiebe, Larry Madin, Francesc Pagès, Dhugal Lindsay, Hege Øverbø Hansen, Saramma Panampunnayil, Martin Angel, Hiroyuki Matsuura, Mikiko Kuriyama, Astrid Cornils, Russ Hopcroft, Colomban de Vargas, Silvia Watanabe, Yurika Ujiie, Hui Liu, Barbara Costas, Tracey Sutton, C. B. Lalithambika Devi, Rob Jennings, Paola Batta Lona, Brian Ortman, Ebru Unal, Leo Blanco Bercial, Nancy Copley, Chaolun Li, Joe Catron, and Dicky Allison.

A Census of Marine Zooplankton (CMarZ) Report

Available online from the CMarZ website, www.cmarz.org

Acknowledgments

This was the first major CMarZ cruise in the Western North Atlantic. The success of the cruise was due to the collective efforts of Captain, Officers, Crew, and all members of the Scientific Party. Throughout the cruise there was a camaraderie and friendliness among all the participants that made this expedition a great pleasure. This cruise was supported by the NOAA Ocean Exploration Program.

RB06-03 CMarZ Cruise Participants on the RV R.H. Brown

(see facing page)

Sitting Row 1 (L-R):Chaolun Li, Saramma Panampunnayil, Silvia Watanabe, Hui Liu, Francesc Pagès, Paola Batta Lona, Tracey Sutton, Martin Angel, Dicky Allison.

Standing Row 1 (L-R): Mikiko Kuriyama, Lalithambika Devi, Brian Ortman, Russ Hopcroft, Nancy Copley, Ebru Unal, Joe Catron.

Standing Row 2 (L-R): Yurika Ujiie, Leo Blanco Bercial, Hiroyuki Matsuura, Larry Madin, Barbara Costas, Hege Øverbø Hansen.

Back Row 3: Colomban de Vargas, Astrid Cornils, Erich Horgan, Dhugal Lindsay, Rob Jennings, Peter Wiebe.

TABLE OF CONTENTS

PURPOSE OF THE CRUISE	. 6
NARRATIVE	. 7
Summary	
MOCNESS and OTHER SAMPLING, and SAMPLE PROTOCOLS	27
1.0 Zooplankton Collections	
2.0 Blue-water SCUBA diving for gelatinous zooplankton	
3.0 Water Collection	30
4.0 Sampling on Station	
5.0 Sample Processing Protocol	30
WATER COLUMN STRUCTURE AT THE STATIONS	33
INDIVIDUAL PROJECT REPORTS	34
1.0 Blue-water Diving	34
2.0 Thaliacea	34
3.0 Planktonic cnidarians	36
4.0 Ctenophores, Amphipods, and Cephalopods	37
5.0 Decapod Shrimp	38
6.0 Mysids	41
7.0 Euphausiids	42
8.0 Ostracoda	42
9.0 Calanoid copepods in the genus <i>Euaugaptilus</i> and the family Scolecitrichidae 4	45
10.0 Calanoid copepods primarily Aetideidae and Heterorhabdidae	
11.0 Other Copepods Identified on RHB06-03	49
12.0 Larvaceans and Planktonic Molluscs	
13.0 Skeletonized Microplankton	51
14.0 Microzooplankton – Tintinnids	58
14.1 Cruise Objectives	58
14.2 Sampling	58
14.3 Discussion/Preliminary Observations	65
15.0 Pelagic fishes	67
15.1 Methods	67
15.2 Results	67
16.0 Larval Fish	69
17.0 Team DNA Sequencing	70
18.0 Silhouette photography, CMarz web site	73
18.1 Silhouette Photography	73
18.2 CMarZ Web site	
19.0 Training on Zooplankton Sampling and Molecular Analysis	76
20.0 ARMADA Teacher at Sea Project	76

20.1 Objectives	76
20.2 Outcomes	77
20.3 Acknowledgments	78
CRUISE PARTICIPANTS	78
APPENDIX 1. Event Log	81
APPENDIX 2. Summary of Blue Water Dive Collections	85
APPENDIX 3. List of DNA extractions from foraminifera	87
APPENDIX 4. Colonial radiolarians collected by diving	148
APPENDIX 5. Tintinnid images and designations followed by preliminary ID	149
APPENDIX 6. MOCNESS Deployment Log	153
APPENDIX 7. Pelagic Fish	161

PURPOSE OF THE CRUISE

The focus of the CMarZ program is on the development of a taxonomically comprehensive assessment of biodiversity of animal plankton throughout the world ocean. The project goal is to produce accurate and complete information on zooplankton species diversity, biomass, biogeographical distribution, genetic diversity, and community structure by 2010. Our taxonomic focus is the animals that drift with ocean currents throughout their lives (i.e., the holozooplankton). This assemblage currently includes ~6,800 described species in fifteen phyla; our expectation is that at least that many new species will be discovered as a result of our efforts. The Census of Marine Zooplankton (CMarZ) program is an ocean realm field project of the Census of Marine Life (CoML).

On this cruise, the focus was the tropical/subtropical waters of the Atlantic Ocean west of the

mid-Atlantic ridge. The objective was to collect and identify the zooplankton distributed throughout the entire water column, with a particular focus on the undersampled mesopelagic, bathypelagic, abyssopelagic zones, and then to sequence them genetically at sea. Thus, the scientific participants on this cruise include CMarZ researchers, expert taxonomists, molecular specialists, staff, and students. Sampling was conducted along a transect extending from the northern Sargasso Sea to the equatorial waters northeast of Brazil (Figure 1). At five primary stations, environmental data and zooplankton samples were

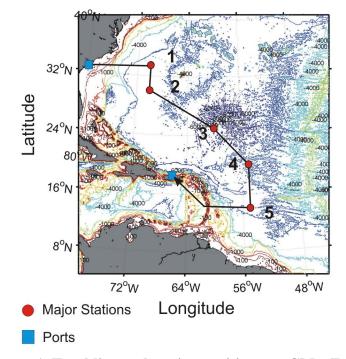


Figure 1. Trackline and station positions on CMarZ Cruise RB06-03, 10 to 30 April 2006. The cruise started in Charleston, SC and ended in San Juan, Puerto Rico.

collected using three Multiple Opening/Closing Nets and Environmental Sensing Systems (MOCNESS). One was a large opening/closing trawl and two were smaller multiple net systems (See MOCNESS Sampling section below for more detail). Other samples were collected with ring nets and water bottles, and by blue water SCUBA diving.

Samples were analyzed at sea using traditional taxonomic approaches and molecular systematic analysis, including DNA sequencing of a target gene portion for each species. After the cruise, follow-up molecular analysis, species counts, and expert taxonomic evaluation and description of any putative new or undescribed species will be done in association with the CMarZ Taxonomic Network. In addition to the intensive sampling of the water column, a series of lectures and workshops were conducted as part of the at-sea training in zooplankton morphological and molecular systematic approaches.

NARRATIVE

10 to 12 April 2006: The cruise got underway at 1400 on 10 April when we left the port of Charleston, South Carolina after four days of intense set-up of the equipment and laboratory spaces needed for the work at sea. Shortly after leaving the dock, the ship spent time in Charleston Harbor while a calibration of the Robertson Navigation system took place, which had undergone repairs while the ship was in port.

The R/V Ron Brown finally left the harbor and got underway for the first station located in the Northern Sargasso Sea about 1800. During the early hours of the night of the 10th, the ship's ride was comfortable, but the winds picked up to around 20 kts towards the morning of the 11th as we steamed out across the continental shelf and the Gulf Stream, and the motion of the vessel made many of the scientific party a bit seasick. The moderately rough weather continued into daylight on the 11th of April and the loading of nets onto the three Multiple Opening/Closing Nets and Environmental Sensing Systems (MOCNESS) and other work in the laboratories went slowly. The initial abandon ship and the fire and boat drill took place around 1030.

Problems with the operation of the trawl winch with 0.68" conducting cable, which was the mainstay of our sampling program, had been identified a couple of weeks before the start of the cruise and most of the repairs had taken place by the time the ship left the dock. On the evening of the 11th, 8000 meters of trawl wire was streamed to test the ability of the winch to carry out the deep MOCNESS tows. Although the winch had no difficulty in paying the cable out, there was significant difficulty bringing the wire back on board at a reasonable haul in speed. During the test, a load cell burnt out and it was replaced. A second test took place on the evening of the 12th. This test indicated that the winch could be used to tow the MOCNESS trawl to bathy- and abyssopelagic depths.

Several science meetings took place during the steaming to Station 1. On the evening of the 11th, there was an introductory meeting to discuss the cruise objectives and to review plans for work at

the stations. On the afternoon of the 12th there were two additional meetings. The first was to work out the final details of the sampling at a station and the protocols for how each of the zooplankton samples was to be processed. The second involved a number of the officers and crew and was focused on the methods of deployment of the over-the-side equipment and who would be in charge of coordinating them.

During the afternoon of the 11th, a ½-m diameter ring net was deployed to 100 m to provide a collection of zooplankton that could be used by the taxonomic experts on board to begin their work on this cruise. A number of species of copepods, ostracods, gelatinous animals, formaminifera, and other groups were picked live from the sample and a number of the species were identified. Some of these were then selected for genetic sequencing on the 12th. Earlier in this day, a first occurred when a zooplankton species (a copepod, *Disseta grandis*, caught on a previous cruise) was sequenced at sea. As far as we know, this is the first time a gene sequencer has produced a gene sequence at sea. This is a very significant early milestone for this cruise.

13/14 April 2006: Finally, waiting for arrival at the first station ended with a phone call from the bridge saying that we were on station at 0500 on 13 April. The seas were moderate and the winds were in the 10 to 15 kt range, fine for work on station. The air was about 17°C, cooler than the sea water, which had a temperature around 19°C. The science watch for the midnight to noon period was awake quickly and the first event was a 1-m MOCNESS tow. The net system was a bit late in getting into the water because the deployment through the stern A-frame required some experimentation to see how best to get it over the 10-m MOCNESS, which was positioned within the stern A-frame area. The tow went well with Larry Madin taking the lead on flying the net for the first part of the tow and Peter Wiebe taking the last part while Larry coordinated preparation of the SCUBA dive. There was lots of excitement when the net system came on board around 0930 and a flurry of activity as the samples were moved from the deck in buckets chilled with ice packs to keep the samples cool to the walk-in refrigerator. They were stored there until they could be photographed and picked for large organisms in the wet lab, and then split into fractions for additional live picking of smaller animals or preservation in either alcohol or formalin.

A blue-water dive was next up and Larry Madin, Erich Horgan, James Brinkley, and Keegan Plaskon (latter two from the ship) went out in the RHIB (Rigid Hull Inflatable Boat) for about two hours of collecting of the more fragile zooplankton that are usually destroyed by collection with nets. The boat, with the divers, boat operator, and gear already on board, was launched from the 02 deck by an automated launch and recovery system that made the operation safe and efficient.

The first tow with the 1/4-m MOCNESS in the early afternoon of the 13th was not successful. A problem with the battery power in the underwater unit resulted in a loss of signal about a third of

the way through the deployment. Only a single sample was obtained, but it also proved to have a number of microzooplankton species of interest.

The final bit of rigging of the 10-m MOCNESS trawl system was completed and by 1600 it had been launched off the stern and was going down to 5000 m. It took about 4 hours to deploy it to the maximum depth and it was a very smooth deployment. Once at depth, the ship's speed was increased to get the angle of attack of the net frame up to the normal towing angle of about 45 degrees and to let the net system rise up with the increased velocity. When the winch began to haul in the towing wire at the slow rate of 10 m/min, the winch started up and then stopped. There was a lot of activity for awhile to try to determine what caused the winch problem. In the end, the winch was enabled by the ship's engineers so that it could haul in at 6 m/min. With 8000+ meters of wire out, it appeared it would take 22 hours to haul the net back in. In reality the wire was hauled in less time because the speed of retrieval increased as more wire came on board, and the net system reached the surface at 0740 on the 14th of April some 16 hours after the tow was begun. The recovery of the frame went very smoothly with a combination of the Aframe and air-tuggers pulling the frame on board and down onto a pair of stanchions used to secure the top portion of the trawl frame. Once the frame was secure, a number of individuals from the morning watch pulled in the nets, which only took about 10 minutes. The newly designed trawl nets fabricated from very fine 335 um nylon mesh proved successful and were in fine shape after the tow. This tow also had some flaws. One cod-end bucket that did not have its fasteners taped or rubber-banded was lost (Net 2) and the tab on net bar 3 broke off during the tow. The cable and swaged fitting from this net bar was found in the cod-end of net 4. This meant that net 1 fished from 5000 to 4000, net 2 fished from 4000 to 3000, and net 4 fished from 3000 to 1000. When net 2 was closed, net 3 closed with it and never was open. When net 3 was supposed to be released, the cable and swaged fitting plus part of the tab fell into the open net 4. Because of the length of the tow and the repairs needed to get the trawl back in service, the second tow at station #1 with this system was scrubbed.

The MOC-10 catches, while not spectacular in terms of biomass caught, were very interesting in terms of the species collected. While water collection with a 30 liter Niskin bottle was being conducted, the taxonomists were bunched in the ship's wet lab processing the MOC-10 samples. It was clear that a number of animals were caught in the deep nets that had not been seen in the shallower MOC-1 tow, especially the net that sampled the 3000 to 1000 m zone. There were many shrimp and gelatinous animals including ctenophores. Martin Angel found at least two new species of ostracod, one he knew about and one he had not seen before. Tracey Sutton found a male anglerfish in very good condition - this specimen was from a group that is only known to the generic level. He also found other specimens of fish species that are rarely ever caught.

The afternoon of the 14th went quickly in calm seas, clear skies, and bright sunlight. The 1/4-m MOCNESS haul came first around 1330. The underwater unit that had failed during the first tow was replaced with the one from the MOC-10, and it and the options case with the fluorometer attached worked very well. This tow was a bit of a bear because it was difficult to keep on the intended course and the bridge had to keep changing speed to keep the towing wire clear of the ship's starboard quarter. The net system came on board around 1600 and the catch again was of great interest to a large group of people, especially those working on the microplankton. Right after the 1/4-m MOC came on board, Russ Hopcroft put his Reeve net in for a deep (500 m) vertical tow during the dinner period to collect larvaceans and other live animals for identification and photography. Larvaceans are particularly fragile animals and rarely come up intact in the MOCNESS. The Reeve net with its very large cod-end allows the fragile animals to be collected more effectively.

A 1-m MOCNESS night tow was started about 1800 and this tow was completed in under 3 hours, which kept us on schedule and made it possible for the divers to leave the ship in choppy seas by 2130 for their night dive. They arrived back about 2315. Both the MOCNESS and the divers' collections provided additional animals that had not appeared in the earlier tows and dives.

The last activity for the first station was another 1/4-m MOCNESS tow and it also was an ill-fated tow. With about 600 m of cable out and the net at 290 m depth, the deck unit lost signal with the underwater unit and data collection ceased. Something catastrophic had happened and the only recourse was to retrieve the system. With the winds picking up sharply since early evening (they were about 17 kts around midnight, up from 8 kts before the divers went out), the decision was made to call it quits at this station and set sail for Station #2.

During this two day transit, there was tremendous activity in the forward biochemistry lab where the Applied Biosystems Hitachi gene sequencer was located. The "UCONN Team DNA" was working around the clock to prepare and sequence animals. A number of species identified by the taxonomic experts on board were placed in a queue for sequencing and a dozen or more were successfully sequenced. Of particular note is the fact that Martin Angel had identified a number of ostracods from the samples acquired so far and some of these were prepared for sequencing. These were the first sequences ever produced for marine planktonic ostracods.

15 April 2006: In the early morning of the 15th of April, there was bright sun coming through the port holes and mix of sun and clouds. The winds were from west southwest at about 25 kts. We were in the southern fringe of the gale that had been forecast for just north of our station #1 for today and there were lots of white caps on the starboard bow as we steamed south. Fortunately we were steaming away from the gale as we headed for Station #2 at 30°N; 70°W.

During the day, the main laboratory was the center of activity with the taxonomic specialists sorting through the samples collected at Station #1, identifying zooplankton species, and working with Team DNA to prepare the specimens for sequencing.

In mid-afternoon, we crossed paths with the lead boat in the Volvo Ocean Race. The leg five leader, ABN AMRO ONE was off on our starboard about 4.5 nm and was headed for Baltimore. There were seven boats in the race. In addition to ABN AMRO ONE, there was movistar, Pirates of the Caribbean, Brasil 1, Ericsson Racing Team, ABN AMRO TWO, and Brunel.

The work at Station #2 began about 1800 with the deployment of the 1/4-m MOC. It did not go well. The same problem that occurred at the previous station re-occurred. With 600m of wire out and the nets down bout 250 m, the deck unit again lost the underwater signal and it could not be re-established. There was no indication of a problem up to the time the system failed. After several hours of testing, two of the underwater units were unable to work on the CTD cable. In addition, one underwater unit suffered electronic damage as a result of the failure. Since these units worked well on the trawl wire, the suspicion was that the CTD cable was causing the problem. This ended our attempt to make a 1/4-m tow at this station.

The night dive that was scheduled for 2130 was also scrubbed because the winds (17 to 21 kts) and sea state were marginal at best. We then decided to do a 1-m MOCNESS early since the time was available. The deployment was scheduled for 2230. Leo Bercial, Chaolun Li, Paola Lona, and Joe Catron got the cod-end buckets on and set the net bar traps. Bruce Cowden, the Bosun, came out onto the deck at 2230 and started the operation by picking up the MOCNESS frame with the port crane to move it aft to the deck area underneath the A-frame. The tow signal cable, however, got caught on the support stanchion just as the frame was being lifted rapidly and the cable was stressed to the breaking point. It took about an hour and a half to re-splice and water-proof the cable. About midnight on the 15th, the 1-m MOCNESS was ready to go back into the water and indeed it did.

16 April 2006: During the wee hours of the 16th of April, the 1-m MOCNESS tow was successfully completed. While the samples were being processed and the net system being reset for another tow, 30-liter bottle casts to collect water for tintinnid analyses took place. This was followed by a pair of vertical Reeve net tows.

The second 1-m MOCNESS at station #2 started about 0730 on April 16th and was successfully completed by 1000. Again there was a flurry of activity as the samples came off the deck and went into the cold room. Those processing the samples were working quickly because the nets came on board just as the group was finishing up the preservation of the previous tow's samples.

Although a blue-water dive was planned for the late morning, wind (around 20 kts out of the west southwest) and sea conditions were still marginal, in spite of the fact that it was warm and sunny, and the dive was delayed until early afternoon. Then with conditions a bit worse, it was cancelled.

In the early afternoon, Erich Horgan and others on the afternoon watch worked on setting up the 10-m MOCNESS. A bracket with a new tab, made by the ship's engineers, was mounted on net bar 3 and then a cable with the swaged fitting was fixed through the tab. The nets were loaded and laid out ready to be deployed. During this tow, a series of test stops and haul backs were planned to make sure the winch could retrieved the wire and to allow the ship's engineers to make adjustments to improve the winch performance.

In spite of the preparation, the launch and towing of the MOC-10 proved to be an ordeal. The launch was for 1445. The first snag was with the cable termination rigging. When the cable was hauled up tight in the over-boarding sheave, it was clear that the electrical cable was twisted in a way that had to be fixed. So the termination rigging had to be taken apart and reconfigured so that the electrical wire was out of harm's way. Then the cod-end buckets and nets, which had been laid out so that the cod-ends could be easily deployed, were lowered into the sea. In the process, a long rent was discovered in the net with 3mm mesh that was deployed open (net zero) for the trip to depth. The launch was stopped while the net was sewn up. Starting the launch again, the tie-down straps were released, the tugger lines were slacked and unhooked, and then the winch wire was hauled in to raise the frame off the deck. Immediately it was noticed that the bar for net 1 had released from the toggle release. The launch was stopped again, the air-tugger lines hooked back onto the frame and the frame brought back down onto the stanchion. Then some agonizing time was spent trying to get the net bars up to the top of the frame so that the swaged fitting from net 1 could be inserted into the toggle and latched. This was made exceedingly difficult because the nets were streaming behind the ship and their drag was very hard to counter. Finally the fitting was secured. The tugger lines were again released and the frame was lifted up and rolled down into the water, and the tow began.

During the down-leg of this tow, the wire went out at a steady 30 m per minute until reaching 4500 meters of wire out (MWO). Then the Chief Engineer had the winch stop and haul in about 250 m to test the winch's haul-in capability and to make some adjustments. After that it went down again. But the ship was having trouble with the wire tending to starboard of the stern because it was no longer towing into the wind. In order to get the ship pointed into the wind, the bridge decided to make a slow turn to port until the ship was again steaming into the wind. That maneuver was started when the wire was out at 5000 MWO. The change in the course had a negative consequence. Towards the end of the turn, which started at 1906 and ended at 2005, the net began rapidly descending vertically, reaching speeds of 60 to 88 m/minute. Essentially the net was in free-fall. An increase in ship speed was requested, but the time lag for an effect was long

(on the order of minutes to ten minutes or more). Later when the net system was brought on board, a kink was found in the wire about 5 meters above the cable termination. The kink may have occurred when the free-fall period stopped and tension was restored on the wire. Once the ship was headed into the wind, the wire streamed straight out off the stern and the net frame stabilized. There was one more test of the wire at 5500 MWO, where the winch was stopped and the wire hauled in a few hundred meters at around 15 m/min. This worked OK. Then the wire was paid out to 6000 MWO (the limit for this tow) and the ship's speed was reduced to allow the net to fall to the desired maximum sampling depth. But this was done with limited success. The net reached a depth of 4315 m before it started to ride back up. And that is where net zero was closed and net 1 opened. Somewhat later the winch operator saw that the level-wind had malfunctioned and that there was a bad wrap on the winch. He had to stop and pay out wire to fix it. The bad wrap turned out to be around 600 MWO. The rest of the haul went fairly smoothly, although there were additional problems with the level wind.

17 April 2006: The trawl came back on board about 0400 on the 17th of April. Several of the samples from great depths appeared to be contaminated by animals living closer to the sea surface. This is a problem that often goes unnoticed when towing opening/closing nets systems shallower than 1000 m where life forms are abundant. But when sampling the bathypelagic realm where most species occur in very low abundance, even small amounts of contamination from the nets passing through the shallow waters and catching surface forms can be significant. Still the nets caught some important species of zooplankton and fish that had not been caught in previous tows. In addition, a bathypelagic fish was caught that is possibly a new species (see Pelagic Fish report below)

After the trawl was brought on board, two Reeve net and two surface ring net tows were conducted. Although a second trawl was scheduled for Station #2, it was cancelled because of the number of repairs needed to be made to the trawl and trawl wire, and also because the winds and seas were building. Winds in excess of 30 kts were forecast for the area later in the day. Around 0700 on 17 April, the ship started steaming for station #3 approximately 600 nm to the southeast [25°N; 65°W].

While the over-the-side work at Station #2 was trying, the sample collection has provided the biologists with more material from which to work and a number of species were added to the list of those already identified.

After the sampling at station #2 had been completed in the early hours of 17 April, around 0700 the Ron Brown started for station #3 some 600 nm and approximately two days steam to the southeast. It was a time to catch up on the work-up of the samples, review the performance of the sampling gear, and to repair and enhance the 10- m MOCNESS, which had suffered some damage to the nets and towing wire on the last tow.

The weather during the first day of the transit was warm (air and water temperatures about 23 C) and the winds were around 20 kts. In late afternoon, the winds had dropped to around 13 kts and the skies remained nearly cloud free.

In an examination of the second deep 10-m MOCNESS tow, the contamination issue loomed large. For reasons that are not clear, the opening/closing of the nets on this tow did not show any significant angle change, as is usual when one net is closed and the next one opened. A plot of the angle versus time data for both tow #1 and #2, clearly showed the angle change spike associated with the closure of net 1 and opening of net 2, the closure of net two (which also resulted in the closure of net 3 and opening of net 4 [because of the broken tab]) and the closure of net 4. No such spikes were associated with the commands to step the toggle on tow 2. In discussions with Martin Angel, Francesc Pagès, Tracey Sutton, and Dhugal Lindsay, all taxonomic experts on variety of zooplankton and fish groups, only net 1 on tow #2 seemed to be a true bathypelagic catch, albeit with lots of nearer surface species also present in the sample. The other nets had poor catches and few deep-sea animals. In working up the catch from net 2, Martin made the assessment that most of it was from contamination.

In looking carefully at the bars when the system was cocked and the cables were tight, there was a gap between them about 2 to 3 cm tall by 300 cm wide. Although seemingly small, when the area was computed and then multiplied by the length of a tow, a considerable volume of water could have passed through the gap and into the net, even when closed. For tow #2, the ship traveled nearly 33 nm (~61,000 m) and gap volume could have been around 4800 m³. This is huge and could very easily explain the contamination problem. Discussion about how to reduce or eliminate the gap contamination problem took place during the day and a plan was devised to construct some net bar flaps that would hang from each net bar and cover the gap between it and the bar below. After dinner on the 17th, concerted effort began to perfect the design and then construct the flaps out of a plasticized cloth material that the Bosun provided. Eight panels were needed 147 cm long and 42 cm wide, with two panels per net bar, one on either side of the middle support for the net retaining rods. The first panel was installed and then some additional discussion took place among those concerned with the contamination about the design and possible problems. All thought the flaps would work while the bars were at the top of the frame, but they were skeptical that the flaps would stay outboard of the bars after they were released. In fact they thought they would be folded inside the net and not close the gap. So an idea to put stays made out of the stiff tie-wraps was put forth to keep the flap fairly stiff and even if they folded in, the material would likely still block the opening enough to reduce the contamination. The rest of the evening was spent making up the flaps with tie-wrap stays.

18 April 2006: During the night, the wind picked up and on the morning of the 18th velocities between 19 to 26 kts were recorded. A front went through the area around 0800 and there was a wind shift from 240° to about 210°. A rain squall line passed through, although there was no

rain on the ship. The wind shift put the wind and seas coming in on the starboard side of the vessel, causing the ship motion to increase significantly. This made it difficult for investigators to work on the samples using the microscopes and the lab was a bit empty during the morning.

During the morning Larry Madin, Leo Bercial, and Peter Wiebe installed the net bar flaps that were intended to close the gaps between the net bars and thereby reduce contamination when the nets were closed.

There was some excitement around 1030 on the 18^{th} when the bridge sighted a small (~15 feet) overturned boat, a RHIB, drifting out in the middle of nowhere (at 26° 53.37'N; 64° 21.73'W). The ship slowed and maneuvered to bring the hull close enough for inspection. As it passed along the starboard side, some large fish were sighted swimming around it. Shortly after, we again picked up speed and headed for Station #3.

In the afternoon, the wind picked up substantially with sustained speeds between 25 and 31 kts from the southwest. With the sea abeam, the water was coming up onto the starboard deck and flooding out into the aft deck area, making working conditions on the deck more difficult.

The issue of the kink in the 0.68" trawl wire was resolved just after lunch as a result of consultations with Jeff Hill (ET), Jonathan Shannahoff (ST), and Bruce Cowden, the Bosun. All indicated that the cable should be re-terminated. Shortly after, the termination was unbolted from the trawl and carried into the staging bay where the wire was cut and the process of removing the stainless steel fitting from the wire and then re-installing it on the new end of the cable was begun. Erich Horgan did most of the work, which was completed around 2200.

During steams between stations, a seminar series of talks had been planned and the first of the series started at 1300 on the 18th. The first two lectures were by Martin Angel and Leo Bercial. Martin talked about Ostracods and the web site he has constructed to provide students and experts easy access to the literature, keys, illustrations, data about the distribution, abundance and size of some of the 200+ known species of planktonic ostracods in the world's oceans. Leo talked about the copepod genus, *Clausocalanus*, that he has been working on. He is developing a genetic method to distinguish easily between species of this genus, a number of which are exceedingly hard to distinguish morphologically.

The second of the safety drills occurred around 1500 and consisted of a ship collision drill and an abandon ship drill. For the latter, people mustered in their alternate sites inside the ship in order to have dry space to put on their survival suits.

Following the drill, the lecture series continued with Nancy Copley describing the Silhouette technique for measuring the abundance, biomass, and size distribution of zooplankton in a sample by taxa.

After dinner there was an intense period of activity to finish setting up the 10-m MOCNESS. A last addition to the frame was a pair of canvas deflector flaps that Larry Madin and Erich Horgan had made a couple of days ago. Holes were drilled in the side I-beam to attach the flaps to the frame. A check of net 1 revealed more extensive damage to the net than had been suspected and this net was replaced by the spare. The nets were then loaded, the cod-ends attached, and nets arranged for launching with all the cod-ends at the bottom of the frame. With all the nets inside the frame, the side deflector flaps were bolted onto the frame with 3/8" cap screws. Finally, grommets were installed in the corners of the deflector flaps and then bungee cord tied to the grommet on one end and a clip on the other. The top and bottom of the flap were attached to the frame with the clips so that the flap would tow streaming around the outside of the frame, thus covering the open portion of the closed nets.

While this was going on, Erich Horgan was finishing the new termination. About 2200 on the 18th, the cable was attached to the underwater unit on the trawl and tested it with the MOCNESS software. It was able to run with no problem.

The evening came to an end with the winds having died down some to between 15 and 20 kts from the southwest. Sea and air temperature remained the same at 23° C.

19 April 2006: The morning of 19 April started pleasantly with a mix of sun and clouds, an air temperature of 23.5° C, a sea-surface temperature slightly warmer at 24.2° C, and winds between 10 and 12 kts from the southwest.

The Ron Brown arrived at Station #3 about 0630 and work began with a 200 m vertical Reeve net tow to collect fragile near-surface zooplankton and provide investigators with new animals with which to work. Shortly after, a pull test to around 5000 lbs was done to ensure that the new cable termination on the conducting trawl wire was secure. During this operation, a discussion ensued about the first deep tow. It was to have been a 10-m MOCNESS tow to 5000 m, but there was a desire to have a shorter tow in the upper 1000 m, so that the taxonomic specialists could start their work at this station sooner. So the order of the two tows was reversed without remembering that the way the trawl wire was laid on the drum would dictate a much deeper tow at the start of the station.

The setup of the MOC-1 for launch took about 45 minutes and the net system went into the water about 0900. As the net reached the intended maximum depth and retrieval started, a bad wrap on the winch was reported and wire had to be paid out to fix it. In fact, there were bad wraps on a

number of the lays and it took paying out almost 5000 m of wire to get to the place where the wire was correctly laid down on the drum. A broken strand in the outer armor was also found at about the place where the wire started developing bad wraps and the loose strand had to be cut and the ends taped securely to prevent more unraveling of the strand. How the strand broke is not known, but it is suspected that it occurred because of wire, under tension, was snapping into gaps left by the level-wind failing to lay the cable evenly on the drum. Because this tow turned into a very deep one, it was decided to do 500 m intervals from 3500 m to the surface with the nets. After adjustments were made to the level-wind, the bosun reported that the level-wind was now working very well and it has done so since. So rather than coming back on board around noon, the tow was now slated to arrive at the surface around sundown.

This was an ill-fated tow, however, for another reason. When the net system arrived at the surface, only a single net bar should have been left to drop. But in fact all were still locked in the release mechanism, except for bar #1, which dropped because the cable/swaged fitting broke about 200 m below the surface (depth determined by a spurious net response at 200 m). So net zero fished down to 3300 m and back to 200 meters and then net 1 fished from 200 m to the surface. The failure of nets to release was because the cables were wrongly mounted into the toggle, so the release commands failed to release the nets. What a learning experience! The problem was magnified by the fact that nearly 5000 m of cable had to be paid out to get the wire on the drum straight. If it had been a normal tow, the problem would have been discovered a lot earlier.

In the late afternoon while the MOC-1 was still coming up, the fire alarm went off and it was not a drill. Ultimately it proved to be a false alarm in a forward area over a tank, but the response was impressive, and all scientists arrived in the main lab muster area in a timely way. An "all clear" was sounded after it was determined that no fire was present.

The early evening was spent doing near-surface (0-200m) ring net tows and 30-liter water collection for microzooplankton. Colomban de Vargas was amazed to find very few planktonic foraminifera in the net tow samples, a situation he has rarely encountered. Other larger species of interest were caught in these tows including the euphausiid, *Sylocheiron suhmii*, a lovely small transparent shrimp-like animal with elongated eyes with only 3 facets and distinct photophores designed for counter-shading. Once identified, it, along with others, was prepared for gene sequencing.

A night SCUBA dive took place later in the evening (Figure 2) and although the divers reported relatively low abundances of animals, they nonetheless came on board with a good collection of live radiolarians, siphonophores (one with a leptocephalus [eel] larvae being consumed by the

gastrozoids), a pyrosome, jellyfish and associated amphipods, and other fragile species that are destroyed in the nets.

20 April 2006:

The first official deep tow of station #3 started around midnight on the 19th with the deployment of the 10-m MOCNESS under good sea conditions (winds in 10 to 12 kt range). The launch was a bit

Figure 2. Larry Madin, Erich Horgan, Phil Pokorsky, and Keegan Plaskon ready to begin a night-time blue-water dive [Photo by P.Wiebe].

difficult at the start, but ultimately the frame rolled down into the water fairly smoothly and soon the net was headed down to depth. During the night there was a wind shift and light winds around 5 to 8 kts began from the north (0°). In the early morning it was cloudy with rain squalls in the area and cooler temperatures (20.73° C). It was raining lightly when the MOC-10 tow #3 came on board very nicely around 0930 on 20 April. This tow was also discovered to have problems. In pulling in the nets, it was found that the cod-end from net three had been lost in spite of the fact that the fasteners had been rubber-banded, which has been the standard way to prevent bucket loss. In addition, the tab on net bar #3 that had been fabricated by the engineers again broke, so that the net bar for net 3 dropped when net 2 was closed and it never fished. This opened net four prematurely. Later in the day, the broken tab fixture was repaired by the engineers, who made it more robust. The catch in the rest of the cod-ends, while sparse, proved to have another set of very interesting deeps sea invertebrates and vertebrates. One interesting species was a mysid in the Gnathophausia group. There are several well-known species, but this

did not appear to be any of them. In addition, there appeared to be no contamination by animals living shallower in the water column or very little. The modifications made to the system appeared to have worked.

The 1-m MOCNESS was next up. It went into the water about 1130, but at 70 m depth, the deck unit lost connection with the underwater unit and nothing would bring it back. So the system was brought back on board. After a series of tests that determined that the cable was OK, the underwater unit was switched with the one on the MOC-10. The tow was started again about an hour later. This time the underwater unit worked fine and a complete set of samples was obtained in the upper 1000 m. The net came on deck about 1600. Such were the gremlins out there, that when the unit that failed was bench-tested, it worked.

Larry Madin, Erich Horgan, and the two crew divers left the ship about 1630 for the next in a series of blue-water dives, as the afternoon watch processed the MOC-1 samples. While the divers were away from the ship in the zodiac, some surface ring net tows were taken by hand. All went well with the dive and the divers returned with more wonderful animals around 1730.

The last events at station #3 were night 1-m and 10-m MOCNESS tows to 1000 m and 5000 m respectively, and a ring-net tow to 200 m. All of these tows were accomplished successfully. The 1-m system was towed early in the evening followed by the ring net tow. The 10-m system, which was deployed at midnight, came up at 1130 on the 21st. This time all the nets fished their intended depths (5000 to 4000, 4000 to 3000, 3000 to 2000, and 2000 to 1000 meters) and the samples showed little or no contamination. This was a perfect ending to a station that started off poorly.

The Ron Brown got underway for station #4 just after noon on the 21st of April in light winds, calm seas, warm air temperatures, and clear skies. Because diving conditions were extremely good and the animal collections were going very well with this technique, a blue-water dive was scheduled for 1330. The divers returned about 1500 and reported that while animals were sparse, they again collected some interesting radiolarians and siphonophores. The remainder of 21 April was spent steaming under very nice sea conditions. The work on board in the laboratories continued unabated.

22 April 2006: The steam to Station #4 (20° N; 55°W) took about 32 hours under mostly clear skies with only a few clouds. In the early morning of 22 April, winds 10 to 15 kts were from the northeast, the sea surface temperature (SST) was 25.56° C, and the air temperature was slightly cooler (24.1° C).

Throughout the day, the investigators worked in the main lab identifying zooplankton and in the sequencing lab they continued to prepare and sequence identified species. During the afternoon

of the 23th, the second session in the seminar series was held with Larry Madin, Hege Hansen, and Tracey Sutton giving the talks. Larry talked about the Liquid Jungle Laboratory, which is a new tropical laboratory for marine and terrestrial research on the Pacific side of Panama. There is a shore-side wet lab in addition to lab space in the main building up on an island hillside, small boats for access to the coastal waters, and a newly installed cabled underwater observatory just offshore. Hege talked about the deep-sea shrimps that were collected on the Mar-Eco cruise to the mid-Atlantic ridge on the R/V GeoSars in summer 2004. She compared the species caught on that cruise with those collected on this one. So far she has found only one species additional to those collected on the ridge cruise and only a single northern species is currently lacking from our current collections. Tracey gave an overview of the groups of deep-sea fish that exist and talked about those that he was finding in our samples. He has found several rare species and one or two that are probably novel. The talks were split into two sessions because the ship's personnel had a safety meeting at 1415 that went until about 1515.

After dinner, the 10-m MOCNESS was made ready for the next watch to launch and tow. The cod-end buckets were attached to the nets and the nets arranged so that they could be deployed off the stern easily. In addition, some repairs to the newly fashioned trawl deflector flaps were made.

23 April 2006: We arrived at Station #4 about 0035 on 23 April and started the work with a vertical Reeve net tow to 200 m. This was followed by a 10-m MOCNESS tow. The bottom of the tow was at 4500 m instead of 5000 m because of the very rough topography in the area. The SeaBeam bathymetry data showed that there were substantial ridges and valleys in the area and our tow line cut across them. The broken strand of 0.68" conducting cable at about 4700 m that was taped after the last tow, came loose after the tape had worn off going through the traction winch and had to be re-taped when it came past that spot going out and coming back in, but this did not interfere with the haul. The system came up and on board at 1245. As the nets were being hauled in, the catch in the buckets were initially examined. There was a spontaneous "OOOOH!!" as a large dragonfish was found in the bucket of net 4 (2000-1000 m). After examining it carefully in the laboratory Tracey Sutton concluded it was probably a new species, and might even represent a new genus. The catch also contained some lovely large red prawns. Not only was this an excitingly spectacular haul, but also once again the nets had fished properly.

A daylight blue-water dive took place in the early afternoon under light winds (~8 kts) from the northeast and sunny skies. The divers returned with only a few animals. The dominant organisms were phytoplankton, the nitrogen fixer *Trichodesmium* and mats of *Rhizoselenia*. The zooplankton were sparse.

While the divers were out, the 1-m MOCNESS was set up for a tow. The cable termination was changed from the MOC-10 to the MOC-1 and then the underwater unit moved to the MOC-1.

About 1520, after a deck check to make sure the electronics and sensors were operational, the net entered the water and the tow began. This tow went fine, except that a collar came off of net 3 and the catch was lost along with the bucket.

Russ Hopcroft and Barbara Costas did a series of net tows and water collection casts, while the 1-m MOCNESS was prepared for a second evening tow. The net system went in smoothly from its position within the back of the MOC-10 frame. The tow, which came on board around 0130 on the 24th, concluded successfully with more interesting animals in the catch. These included a small tropical squid in the surface sample that Dhugal Lindsay knew existed, but had not seen before.

24 April 2006: In the wee hours of 24 April, the divers went out in the RHIB for a night dive in waters that were now around 26.5° C. Again the take was sparse, reflecting the oligotrophic nature of the station area, but they did collect two very interesting delicate ctenophores, *Beroe mitrata*, and *Thalassocalyce inconstans*. Larry Madin and Richard Harbison discovered and named the latter species some time ago. The genus means "cup of the sea" after its shape and *inconstans* because it is in constant motion. Both individuals were still alive in the evening of the 24th and were the subject of observation and photography, prior to being submitted for sequencing.

A 1/4-m MOCNESS tow was scheduled as the last item to be done at Station #4, but the underwater unit again proved to be unreliable on the deck and so the tow was scrubbed. The ship got underway for the last station (#5) about 0400.

Steaming during the day again gave the investigators an opportunity to catch up on the laboratory investigations of the samples collected at the previous station. There was also a concerted effort to update the CMarZ web site and to add additional photos of people and gear at work on the cruise. It was pleasant steaming weather with sunny skies sprinkled with puffy clouds, winds from the east (90°) at about 15 kts giving rise to some white caps and choppy seas on top of an underlying swell. Both the sea and air temperature was around 26° C.

At 1400 on the 24th, a subset of the scientific party (Martin Angel, Larry Madin, Rob Jennings, Russ Hopcroft, Tracey Sutton, and Peter Wiebe) met in the Chief Scientist's cabin to take part in a press conference call organized by Fred Gorell of NOAA. In preparation for the call, two photos were put on the web of two of the first zooplankton (the copepod, *Paraeucalanus attenuatus* and the pteropod, *Clio pyramidata*) collected on the cruise that were in the first group sequenced at sea. In addition, a photo of Paola Batta Lona "operating" the sequencer was also posted on the web. Reporters on the call included Christina Reed, a freelance science writer, Peter Spotts of the Christian Science Monitor, Warren Wise of the Charleston (SC) Post & Courier, and Noel Anenberg, who writes a children's / educational series for LA Times. In

addition, there were several others taking part in the conference call including Ann Bucklin, the CMarZ lead investigator and a co-PI on this OE project, responsible for the shipboard sequencing activities. The conference call lasted about 75 minutes and covered the overall rationale for CMarZ and the cruise objectives. Questions from the reporters then framed the remarks made by our group of scientists about what we had already learned and how the sequencing information would ultimately be used. The session was tape-recorded by NOAA.gov and would be used for production of a story to be podcast. Coincident with the press conference was the third and last Fire and Emergency Drill, from which the participants were excused.

A schedule of MOCNESS tows, blue-water dives, and other net tows and water collections was prepared in the late afternoon for the first day and a half at Station #5. The early evening was spent setting up the 1-m MOCNESS for a tow after the ship arrived on station the next morning.

Then late in the evening around 2300, the third in the seminar series took place. This late hour was chosen because this was when most of the scientists from both watches, i.e. the midnight to noon and noon to midnight, were awake. With the last station quickly approaching and the end of the cruise in sight, there was an increased impetus to make the most of the time remaining. Barbara Costas provided an introduction to the ciliates and in particular the groups that include tintinnids, oligotrichs, and other choreotrichs. She described her work on tintinnids (small ciliate microzooplankton) and the difficulties involved in using the classical methods to preserve and identify them. She has been developing molecular methods to determine species identities, and has found that a number of forms previously described as distinct species appear to have very similar genetics and may not be separate species. A library of ciliate genetics is being built and is at the point in some areas where bulk DNA analysis can be used to track the presence and perhaps the abundance of the different species. Rob Jennings described the steps carried out by Team DNA in the processing of the animals in the sequencing lab. This involved extracting the DNA, amplifying it, running the sequencing reactions, and then running the product on the sequencer. He described how to resolve the data from noise in the reaction by sequencing a forward strand and a reverse strand. Once the sequence has been finalized, the next step was to compare it to known sequences in the bank of sequences to see if the sequence matches one for a known species. Since the cruise began, about 500 species have been submitted to the lab for sequencing and there have been 775 specimen extractions. [Note: These numbers have gone up since station #5 was not included in the estimates]. Russ Hopcroft gave a tutorial on larvacean diversity and ecology. Like the tintinnids, the larvaceans are extremely fragile animals and are difficult to collect intact. They make an elaborate external feeding structure that they use and then discard when it gets clogged up. This may happen as often as 14 times per day. Russ described the house structure, which is unique to each species and therefore can be used to identify the species. There are 3 families, 15 genera, and 69 known species. On this cruise, he has collected fewer larvaceans than expected.

25 April 2006: The Ron Brown arrived at Station #5 around 0830 on 25 April with the decks wet from some early morning rain showers. Unlike the previous few days, the skies were cloud covered. Still the winds were light (5 to 8 kts from the east southeast) and the air warm (25.9° C) and humid. The sea surface temperature was the warmest experienced on this cruise (27.147° C).

Almost immediately there was a net in the water. Russ Hopcroft deployed his Reeve net for a tow to collect larvaceans. In this tow were several larger species of larvaceans that he was expecting to encounter, but had not done so until now. The 1-m MOCNESS went in about 0915.

In the area of station 5, there are physical structures in the water column between 200 and 500 m known as "thermohaline staircases". When a plot of temperature or salinity versus depth is made, distinct steps in the profile are visible wherein there are zones of ten meters or more of isothermal and isohaline water and then narrow transition zones where both temperature and salinity change abruptly until there is another step. The zones of constant temperature and salinity are active mixing zones as demonstrated by work that Ray Schmitt and colleagues had done in this area some years ago. The staircase structure might also be an area of unique biology, but this has not been previously studied. Knowing that there was the possibility that the staircase structure might be present, we looked carefully at the data from the first tow as it was in progress. The tow went smoothly and during the downcast a plot of the temperature and salinity structure showed that indeed there was a staircase structure in the same depth zone that Schmitt had observed in 1985.

At the end of the tow, while the net was approaching 25 m depth, the winch overheated and shut down. It took a relatively short time for the engineers to investigate the problem and to start the winch operating again. The last net then sampled the upper 25 meters and the net came on board about 1238.

The divers went in around 1300 with winds in the 12 to 15 kts range. They came back with a real beauty of a collection of jellyfish, siphonophores, and salps. This station was very different from the previous two because of the rich surface life they encountered.

In the late afternoon, ring net towing primarily for larvaceans and foraminifera, and water collection for microzooplankton (tintinnids) were carried out. At dusk, the second 1-m MOCNESS was started. This tow was very successful. All the nets opened and closed where intended and the catches were quite good. There were no problems with the winch this time. Once the 1-m net was secured, the cable termination and underwater unit from the 1-m system were moved to the MOC-10, the buckets installed, and the nets arranged for deployment. This took about an hour. By 2200 the MOC-10 was heading down to depth.

26 April 2006: Some twelve hours later at 1000 on 26 April, the trawl re-appeared at the surface. It had caught a wonderful assortment of animals, especially fish. Tracey Sutton was particularly pleased. Martin Angel was busy trying to increase his inventory of ostracod species and exceed his previous inventory compiled for the Eastern Atlantic. Already at the start of this station he had identified nearly a third of the known species of planktonic ostracods. Net one, the first to be fished as the system returned from 5000 m to the surface, was ripped up a bit on the starboard side and a support rope was ripped off the seam to which it had been attached. It is a mystery how this happened.

Shortly after, the 1/4- m MOCNESS was returned to service by using an old 16-bit electronics unit that was brought on the cruise in case other units failed to operate properly. This tow to 500 m went OK, except that the flowmeter stopped working during the net system's return to the surface. Water filtered for some nets will thus have to be calculated by time the net was open and distance traveled. These samples caught with very fine mesh nets (64 um) were primarily used by those investigators interested in microzooplankton.

The second 10-m MOCNESS tow of station #5 started in the early afternoon under fair skies with winds a steady 12 to 15 kts from the east northeast (82°) and tropical air (26.22° C) and water (27.19° C) temperatures. Around 1900, the MOC-10 reached within 200 m of the bottom (~5200 m) with more than 7000 meters of wire out. The rest of the evening was spent flying the MOC-10 up from 5000 m. The tow took longer than expected. The net came up too fast on its own accord to haul wire in quickly, so a good portion of the tow was spent coming in at 10 or 15 m/min.. The first net fished from 5000 to 4000 m. On this last MOC-10 tow, it was decided to use the last net to fish the upper 1000 m and use the other three to cover the 5000 to 1000 m range. The group was really interested to see what large-ish animals might be captured in the near-surface zone with the big fine-meshed nets.

27 April 2006: At midnight on the 26th, when the science watch changed, Larry Madin came in to take over the "flying" of the MOC-10. There was some discussion about whether the nets had opened and closed where intended because no significant angle change had been observed when the net system was sent the command to close one net and open the next. When the net system finally came on board about 0330 on the 27th, the concern disappeared. All evidence suggested that the nets opened and closed where intended and the catches were pretty spectacular. Contamination was minimal. Francesc Pagès was excited because previously he had been catching a particular transparent jellyfish about 5 cm in diameter in the 1-m MOCNESS collections that had very few distinguishing characteristics and was an undescribed species as far as he could tell. In the 1000 to 0 net, a much larger individual was caught and it had characteristics that he could now use to make a description. Also Dhugal Lindsay was happy with the squid collection. Several species that had not been caught earlier were in the sample including a *Vampyroteuthys*. Martin Angel also found specimens of a species that he had been

looking for. In addition, Russ Hopcroft gave Martin another ostracod not yet seen on the cruise from a Reeve net collection made soon after the trawl was on board (from 0415 to 0445). So the last station was ending with a flourish.

The 1/4-m MOCNESS tow began around 0600, under cloudy conditions and winds 13 to 18 kts from the east. A few rain squalls moved through the area. This tow was used to sample a special series of depths for Colomban de Vargas and Yurika Ujiie to look at how the vertical salinity and temperature structure in the

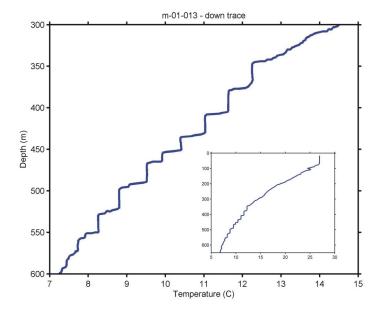


Figure 3. The temperature profile from the last 1-m MOCNESS tow of the CMarZ cruise showing the staircase structure.

upper 300 m might be affecting the foraminifera. This targeted depth sampling was based on the information from the down trace and from earlier tows. The 1/4-m tow came back on board about 0900 with samples that were a bit disappointing to Colomban because the catches were fairly sparse and there were few foraminifera.

The last tow of the cruise was made with the 1-m system. It was targeted at the staircase structure mentioned above, which showed prominently on every tow at this station that went below 300 m (Figure 3). Nets were opened and closed so that one fished in an isothermal/isohaline (mixed) zone and then the next in the interface between it and the mixed zone just above. We successfully fished 4 mixed zones and 4 transition regions starting about 550 m below the surface and ending about 400 m.

Over the last three days, Team DNA received more identified specimens for sequencing and also a few more unidentified forms that might be undescribed. The total number of identified specimens in the bank topped 1000. More than 400 sequences had been run and it was anticipated that there would be more than 100 good species sequences by the end of the cruise. Many of the other sequences may turn out to be usable or may need more work to make them good. The nature of the sequence would determine what additional steps might need to be taken, like running an additional PCR under different conditions to optimize the sequence reaction. There is more work to sequencing than simply extracting the DNA, amplifying it, and then running it through the sequencer to get the sequence. Having to repeat steps with different conditions is typical.

With the last over-the-side sampling completed around 1500 on the 27th of April, the R/V Ron Brown set sail for San Juan, Puerto Rico.

28/29 April 2006: During the two day trip to San Juan, the activity of the science party focused on packing up all the gear and getting it ready for off-loading and shipping on the day the ship reached port. In addition, the investigators wrote up sections of the cruise report.

At 1030 on the 28th, there was a conference call with CoML media relations lead, Terry Collins. Included in the call were Martin Angel, Larry Madin, Rob Jennings, Tracey Sutton, Russ Hopcroft, and Peter Wiebe. Also Ann Bucklin and Fred Gorell were present from a distance. Discussion centered on what was going to be the focus of the CoML press release about the cruise and its findings.

During the morning of the 29th (around 0900), there was a final 45 minute blue-water dive involving all of the authorized divers on board to inspect the hull of the Ron Brown. Later in the evening after we arrived back in the US EEZ a net tow was taken to obtain live zooplankton for video imaging by Russ Hopcroft to be used as part of the press material package on the CoML web site.

The 20' shipping container van on the ship was loaded by mid-afternoon on the 29th of April and the remaining gear was assembled in totes and boxes for off-loading and packing in a second van that was to be on the Coast Guard dock in San Juan.

30 April 2006: The R/V Ron Brown entered San Juan, Puerto Rico harbor about 0800 on 30 April. With the tying of the lines on the Coast Guard dock in the Old Town area of San Juan, this CMarZ cruise came to an end. Off-loading of the science gear began shortly after the ship was tied up. By noon, the second van was loaded and ready for shipment back to Woods Hole, Ma.

Summary

This CMarZ cruise was a remarkable expedition that brought together classical taxonomists and gene sequencing experts to collaborate at sea and produce impressive results in just three weeks. Zooplankton and fish samples were obtained from 5000 m to the surface at five stations distributed from 33.5 N to 14 N in the western North Atlantic Ocean. From these samples, the investigators identified between 500 and a 1000 species, and they provided more than a 1000 specimens to the DNA lab on board the ship for sequencing. For several taxonomic groups, a significant fraction of the known species were collected and identified. For example, 65 species of ostracod were identified by Martin Angel, representing nearly half of all 140 known ostracod species in the North Atlantic Ocean. Six of the ostracod species are not yet described in scientific literature. Nearly all of them were submitted for sequencing and the first DNA barcode for a

planktonic ostracod was obtained on this cruise. More than 40 species of molluscs (pteropods, heteropods, etc.) were identified and more than 100 species of jellyfish, several of which may be undescribed. Several hundred species of copepods were identified and more than 100 species of fish, many rarely caught, and two of which may be undescribed. In addition, several groups brought photographic equipment on the cruise that enabled hundreds of high resolution digital photographs to be made of many of the zooplankton species identified and submitted for sequencing. Russ Hopcroft in particular made many photos that were put up on the web site during the cruise.

Having a gene sequencer and associated DNA laboratory equipment and personnel on board made it possible for a level of interaction between taxonomic specialists and molecular biologists that is seldom achieved in any other setting. The high productivity in terms of the identification and sequencing of known and unidentified specimens was the result of the very positive interactions that occurred while at sea. In spite of the difficulties encountered in MOCNESS sampling, the goals of the cruise were met and overall results were successful.

MOCNESS and OTHER SAMPLING, and SAMPLE PROTOCOLS

1.0 Zooplankton Collections

Zooplankton and micronekton were quantitatively sampled throughout the water column using a 1/4-m, a 1-m, and a 10-m MOCNESS (Multiple Opening/Closing Net and Environmental Sensing System; Wiebe *et al.*, 1985; Figure 4). The MOCNESS telemetered data continuously to the ship, including depth, temperature, salinity, horizontal speed, and volume filtered. This allowed on-the-fly adjustment of sampling depths or times, and completion of a continuous series of stratified hauls in a relatively short time. All data were recorded electronically for subsequent analysis.

The MOC-10 carried 5 separate nets; the mesh size of the nets was a combination of 3 mm and 335 μ m mesh. Net 0 had 3 mm mesh and nets 1 to 4 had 335 μ m mesh nets of special design that were fabricated for this cruise. In addition, during the cruise, deflector side flaps and net bar flaps were constructed to prevent contamination of the deep samples from plankton in other strata, especially those closer to the surface (Figure 4). The MOC-10 was launched, towed, and recovered through a stern A-frame with the ship maintaining a speed of 1.5 to 2.5 kts. The trawl was deployed with the first net open (3mm mesh) down to the deepest depth desired, normally 5000 m. It was closed at that point, and subsequent nets (335 um) were opened at desired depths as the trawl was hauled obliquely toward the surface. Thus, one MOC-10 net sampled from the surface to the bottom and the other nets normally sampled ~1000 m intervals from the bottom up to a depth of 1000 m (Figure 5).

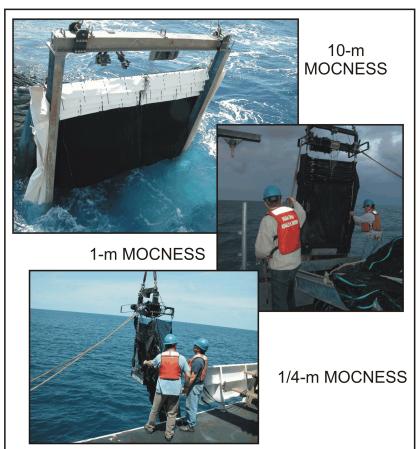


Figure 4. The three MOCNESS's used on the CMarZ RB06-03 cruise to the Northwestern Atlantic Ocean. Note the net bar and deflector flaps on the MOC-10 developed on the cruise to prevent contamination of the samples.

Above 1000 m, verticallystratified sampling was done using a 1-m MOCNESS equipped with 9 nets with 335 um mesh. In addition, a 1/4-m MOCNESS with 0.64 µm mesh was used to collect foraminifera and other microzooplankton in the upper 500 m (Figure 5). The use of the large trawl below 1000 m enabled large volumes of water to be sampled (tens of thousands of cubic meters) to compensate for the very low abundance of species that occur at bathy- and abyssopelagic depths. The smaller 1-m and 1/4-m MOCNESS's provided adequate sample sizes in the upper 1000 m.

Several other nets were used for surface or near surface zooplankton collections. A Reeve Net consisting of a ½-m ring net attached to a large-volume cod-end was used to

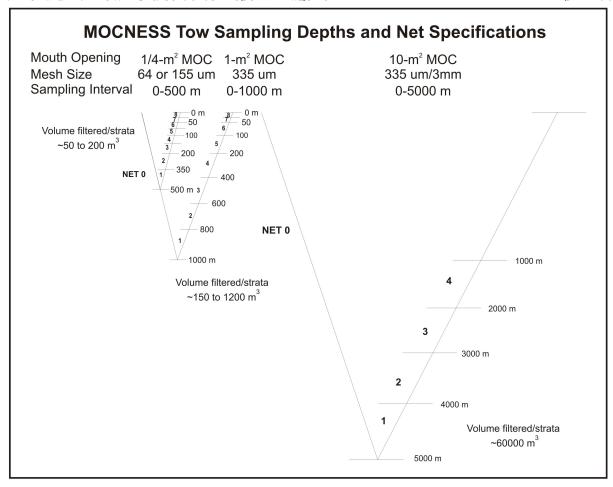


Figure 5. The general towing and sampling strategies used for the MOCNESS's.

collect fragile gelatinous animals and microzooplankton in the upper few hundred meters. These tows were made opportunistically. Other very fine mesh $(5\mu$ and 10μ) ring nets deployed by hand were used to collect microzooplankton during periods when the blue-water dives were taking place.

2.0 Blue-water SCUBA diving for gelatinous zooplankton.

Collection of living or intact specimens of gelatinous zooplankton is difficult with nets or trawls because the organisms are usually damaged and sometimes destroyed. During the last 30 years, the technique of blue-water diving to make observations and collections of these fragile animals by SCUBA has been developed and this technique was used on this cruise. A group of (usually) 4 divers worked from a small inflatable boat launched from the ship. They were connected by 10 m long tether lines to a central line hanging down from the inflatable and manned by a safety-diver

who watched over the others. Each diver moved about within a 10 m radius to locate, observe, and collect free-swimming gelatinous animals. The technique was only semi-quantitative, but allowed collection of live and undamaged specimens, as well as in-situ photos of behavior. Organisms were collected in simple wide-mouth jars and returned to the ship for further study. The same technique was used at night, with the addition of underwater flashlights or headlamps. During this cruise a day and a night dive was planned for each station.

3.0 Water Collection.

A thirty-liter Niskin bottle was used to collect water for tintinnid analysis and for use with other work with microplankton. The depths selected for sampling were generally based on the water column temperature and salinity structure.

4.0 Sampling on Station.

An idealized scheme for sampling at each station was approximated that enabled replicate tows with each MOCNESS to be made during an approximately 48 hr period (Figure 6). MOC-10 tows generally took 10 to 12 hours to complete, MOC-1 tows took about 3.5 hours, and MOC-1/4 tows took about 2 hours. In addition, a 2-hour time block was allocated for two blue-water dives. Not shown on this scheme was time for opportunistic sampling with ring nets or water collection with the Niskin bottle. In reality, neither replicate samples with all net systems nor blue-water dives were obtained at all the stations, because of time and weather limitations, and gear malfunctions.

5.0 Sample Processing Protocol.

Samples collected with the MOCNESS's were processed using a standard protocol (Figure 7).

On Deck: With completion of the tow, the nets were immediately washed with seawater as they were pulled on deck and the plankton still in the nets carefully moved into the codends. The codends were placed in buckets with ice packs to cool the samples and moved expeditiously into the walk-in cold room to await analysis.

Ship-board laboratory processing:

<u>Specimen removal</u>: One by one the cod-ends were taken into the wet lab for digital photographing, and the picking and removal of large individuals of 1) gelatinous forms, 2) fish, and 3) macrozooplankton/nekton. Pickers described what was being removed and a recorder logged the

information. The specimens removed were placed in numbered iars, shell vials, or dishes and the recorder wrote down all specimen information on the data sheets provided, linking the container number to specimen and collection

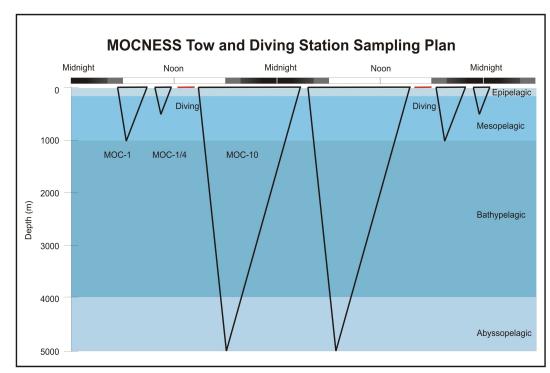


Figure 6. The idealized plan for sampling at each station to enable pairs of net tows and dives both day and night.

data. This was done so that the actual taxonomic composition and species count for each sample can be reconstructed. The removed specimens were subject to a variety of procedures including further identification, dissection, preservation (in alcohol, frozen nitrogen, or formalin as appropriate), or taken for photographic imaging prior to preservation.

Sample splitting and preservation: Within a few minutes of arrival, the stratified samples (with most large gelatinous forms, fish, and macrozooplankton/nekton removed) were passed to the individuals responsible for splitting the samples (Figure 7). Generally ½ (split A) was preserved in formalin for future studies, including biomass estimates (e.g., displacement volume), species counts, and other quantitative analyses. The other half was split again with ¼ (split B) for live picking in the main lab and subsequent preservation in alcohol for later taxonomic analysis. The other ¼ (split C) was immediately preserved in alcohol. After picking, the integrated sample (net 0) was generally split into two halves with one preserved in alcohol and the other in formalin. Picking of foraminifera from the live split took a long time, so this fraction was kept in the the

cold room and often not preserved in alcohol for several hours. Condition of these samples is questionable.

Sample analyses:

Species were identified by the taxonomic experts on board. Several individuals of each identified species were placed in a labeled vial and submitted to the DNA lab for at-sea DNA extraction, PCR amplification of target genes, and sequencing (with a few specimens retained as vouchers). Samples and specimen numbers were entered into the CMarZ Specimen Log, an ACCESS database. Representative specimens of many species were digitally photographed before preservation and some were photographed after preservation.

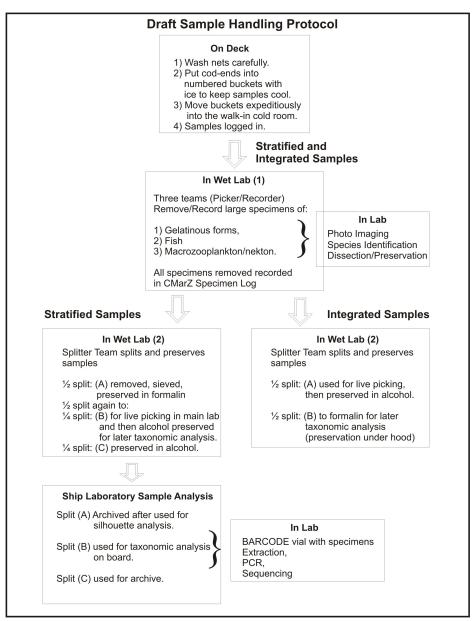


Figure 7. Schematic drawing of the protocol for processing zooplankton samples on the CMarZ cruise.

Specimens of the skeletonized protists were recovered from epi- and mesopelagic samples using simple decantation processes. The taxa of interest were manually sorted under a dissecting microscope immediately after collection. The isolated cells were cleaned in filtered sea-water using micro-brushes, and put into individual tubes containing 100 µl of GITC buffer. This buffer has been developed in the de Vargas laboratory and allows extracting the nucleic acids from the

organisms while preserving their micro-shell. The material was stored at -20°C before further analyses. Total DNA was extracted according to protocols developed by de Vargas *et al*.

WATER COLUMN STRUCTURE AT THE STATIONS

The Station locations (Figure 1), which ranged from the Northern Sargasso Sea to the tropical waters east of the Windward Islands, provided contrasting physical settings for the zooplankton collections. In the Northern Sargasso Sea, the "eighteen degree water" was present from near the surface (~40 m) to more than 400 m deep with only a shallow mixed layer of slightly warmer water at the surface (Figure 8). The main thermocline and halocline occurred between 500 and 1000 m below which temperatures gradually decreased from around 5° C to below 3° C at 5000 m. At station 2, a similar structure was present, although the surface layer was warmer (~20° C) and there was a distinct gradient in temperature and salinity in the "eighteen degree water" zone. The upper water column T/S properties at station 3 were distinctly different with lower salinity water at the surface increasing to a maximum around 100 m, and a much warmer surface temperature (~24° C). In addition, the zone of nearly isothermal and isohaline water seen at the northern stations was no longer present. Instead, below 100 m there was a steady decrease in temperature and salinity to about 900 to 1000 m and then a more gradual decrease in temperature. Salinity reached a minimum at about 900 m and then increased down to about 1200 m before gradually decreasing to 5000 m.

The pattern of low salinity at the surface, a peak at \sim 100 to 140 m, a minimum at 800 to 1000 m, a secondary maximum around 1400 m, and then a gradual decrease to the sea floor was observed at stations 4 and 5 in increasingly exaggerated form (Figure 8). Sea surface temperature also increased to the south with Station 5 having surface temperatures around 27° C. In addition at station 5, the staircase formations between 250 and 550 m were present as described in the narrative (Figure 3). An explanation for the origin of the water seen in the area sampled at stations 3 to 5 was provided by Ray Schmitt (WHOI) while we were at sea.

"The low salinity water at the surface originates in near equatorial latitudes, where rainfall exceeds evaporation under the Intertropical Convergence Zone (ITCZ). Basically it's the water that evaporated under the trades coming back down. The Amazon outflow is also important in this freshwater supply. ... The salinity maximum at ~150 m depth is coming from the Northeast. It is formed from the surface waters that have experienced high evaporation under the trades and been transported to the north in the surface Ekman layer. There is a region at ~25 N in the eastern Atlantic where the salinity maximum is at the surface, this water is subducted and carried southwest in the gyre circulation to [this area]. Georg Wust called it the Subtropical Under-Water (SUW). Farther down at about 800 m depth, [there is] the salinity minimum associated with the Antarctic Intermediate Water (AAIW). It's coming from the south, as part of the thermohaline circulation. Freshness originates from precipitation in the Southern Ocean.

So it's a layer cake with surface freshness from the South, SUW from the North and AAIW from the South. The salinity gradient in the main thermocline between the SUW at \sim 37.2 and the AAIW at \sim 34.8 may be the strongest large scale unstable salt gradient in the world. And thus its propensity for forming these salt finger staircases."

INDIVIDUAL PROJECT REPORTS

1.0 Blue-water Diving (Larry Madin)

Blue-water, or tethered open-water, diving is a simple technique that allows observation, photography, and collection of undamaged live zooplankton, particularly larger gelatinous forms that are commonly damaged or destroyed in nets. During the CMARZ cruise, 8 dives were made by Larry Madin and Erich Horgan, assisted by RV Brown crew members, Lt. Liz Jones, Ens. James Brinkley and 1st Asst. Engineer Keegan Plaskon. Dives were supported by the RV Brown's RHIB workboat, driven by Phil Pokorsky. We made at least one dive at each station, with 5 during daylight and 3 at night (Table 1).

On this cruise the main dive objective was to collect gelatinous animals for identification and DNA bar-code sequencing, as these forms are less likely to be represented in net collections. During the dives we collected approximately 260 individuals of 42 species (Appendix 2). This included 4 species of medusae, 13 of siphonophores, 6 of ctenophores, 7 of molluscs, 10 of thaliaceans, and a few others. In the oligotrophic waters of Stations 4 and 5, we encountered numerous colonial radiolarians and *Trichodesmium*. In general the abundance of large macrozooplankton on these dives was fairly low, consistent with the low abundances of other zooplankton sampled with the nets.

Some notable findings included two specimens of the epi- and mesopelagic ctenophore *Thalassocalyce inconstans*, a specimen of the siphonophore *Halistemma cupulifera* that had caught a leptocephalus (eel) larva, and a surprisingly high diversity of both siphonophores and Thaliaceans. Collected specimens were examined for taxonomic identification, morphological study and behavior, and then added to the group to be sequenced.

2.0 Thaliacea (Larry Madin)

Collections of Thaliacea (salps, doliolids, pyrosomes) were rather sparse on this track, although 17 species were obtained either in the net tows, or more often, from the dives.

Net collected samples included:

- 1. Cyclosalpa polae (aggregate)
- 2. *Thalia democratica* (solo & aggregate)

- 3. *Salpa cylindrica* (solo)
- 4. *Iasis zonaria* (solo & aggregate)
- 5. Salpa aspera (aggregate)
- 6. Salpa fusiformis (solo & aggregate)
- 7. *Helicosalpa virgula* (solo)
- 8. Dolioletta gegenbauri
- 9. Doliopsis sp.
- 10. Doliolina sp.
- 11. Doliolum denticulatum
- 12. Pyrosoma atlanticum
- 13. Pyrosomella sp.

Most of these were in the shallower nets, and were only found in small numbers (1 to 4 of each).

Species collected during dives included:

Brooksia rostrata (aggregate)

Iasis zonaria (aggregate)

Salpa aspera (solo & aggregate)

Salpa fusiformis (solo & aggregate)

Salpa maxima (solo & aggregate)

Salpa cylindrical (solo)

Pegea bicaudata (aggregate)

Pegea confoederata (aggregate)

Dolioletta gegenbauri

Doliolina sp.

Pyrosoma atlanticum

All salps were identified and measured, and good specimens (mainly from dives) examined and photographed for anatomical details. These descriptions will become part of the detailed morphological information which will accompany the genetic data. A parallel project to develop a morphological and molecular phylogeny of the Thaliacea will be carried out by Madin and Bucklin over the next two years.

Table 1. Distribution of species by Station

Station 1	Station 2	Station 3	Station 4	Station 5
B. rostrata	C. polae	C. polae	B. rostrata	C. polae
C. polae	I. zonaria	P. bicaudata	D. denticulatum	H. virgula
I. zonaria	S. aspera	P. confoederata		I. zonaria
S. aspera	S. fusiformis	S. aspera		P. confoederata
S. cylindrica	D. gegenbauri	S. fusiformis		S. fusiformis

S. fusiformis	D. denticulatum	S. maxima	S. maxima
T. democratica	Doliopsis sp.	D. gegenbauri	T. democratica
D. gegenbauri		Doliolina sp.	D. denticulatum
		D. denticulatum	
		P. atlanticum	
		Pyrosomella sp.	

All species found at the 5 stations can be considered warm-water cosmopolitan forms. Although Station 3 appears to have the greatest diversity and Station 4 the least, the sample sizes are probably much too small to draw any real conclusions.

3.0 Planktonic cnidarians (Francesc Pagès, Dhugal Lindsay, and Larry Madin)

Our main goal was to increase knowledge of the species composition and vertical distribution of planktonic cnidarians, mostly below 1000 metres depth. About 110 species have been collected, namely siphonophores (70 species), hydroidomedusae (30 species) and scyphomedusae (10 species). About 5 medusae have not been properly identified (nicknamed as Red Ball, *Pegantha* 24, *Pegantha* M, White *Nausithoe*, and Transparent *Nausithoe*) and some could be new species. One of the nicest and more interesting specimens is an epipelagic narcomedusan of the genus *Pegantha* (P. 24), whose 2 otoporpae (lines of cnidocysts) per marginal lappet bifurcate ending in 4 statocysts (sensorial organs), a splitting never before reported in any other narcomedusan.

The blue-water dives led by Larry Madin and Erich Horgan collected valuable specimens of rare and little-known species like the recently described siphonophore *Lilyopsis fluoracantha* (Haddock, Dunn and Pugh, 2005), but most of the specimens belong to species described a long time ago, such as *Athorybia rosacea* (Forskal, 1775), *Rosacea cymbiformis* (Chiaje, 1822), and *Lilyopsis rosea* (Chun, 1885).

The Ring net and the Reeve net proved to be excellent devices for collecting small-sized planktonic cnidarians. In particular, the examination of some early stages of hydromedusae that were collected will shed further light on the growth, development, and morphology of some multispecific genera like *Podocoryna* and *Bougainvillia*.

The MOCNESS-1, towed in the top 1000m, collected the greater portion of the specimens examined. Many species widely distributed in epipelagic warm waters were obtained, as well as some specimens of little-known mesopelagic siphonophores like *Frillagalma vityazi* Daniel and *Halistemma* sp.

Below 1000 m depth, the MOCNESS-10 collected several little-known species such as the siphonophores *Nectadamas richard*i (Pugh, 1992) and *Lensia quadriculata* (Pagès, Flood and Youngbluth, 2006). Likewise some specimens of the genera *Apolemia*, *Erenna*, and *Bargmannia* were also captured, but their specific identification require additional microscopic analyses.

It is too soon to estimate the amount of information obtained in comparison with the sampling effort spent. However, in our opinion, the number of species found is lower than was expected, especially below 1000 m depth where the number of specimens caught was very low, suggesting a rather sparse macro- and megaplanktonic community of gelatinous organisms. This is only partly due to the use of nets for the sampling, since results from other oceans (e.g. Southern Ocean) using similar devices have collected higher gelatinous biomasses. It is interesting to note that very few specimens of the scyphomedusan genera *Atolla* and *Periphylla* were collected. Both are common dwellers in the meso- and bathypelagic waters of the oceans.

Preliminary results from the so-called "Staircase Tow" (MOCNESS-1 Tow 13) carried out on 27 April at station 5 suggest some kind of species stratification along the hydrographic staircase. Twenty species of gelatinous zooplankton were collected, namely 13 siphonophores, 3 hydroidomedusae, 3 ctenophores and 1 salp. Only the siphonophore *Abylopsis tetragona* -a fast swimming species- occurred in the eight ranges sampled between 547 and 461 m depth. Two siphonophores (*Lensia ajax* and *L. exeter*) occurred frequently, but irregularly between net 1 (547-527 m depth) and net 8 (464-461 m depth). An increase in the number of species was observed in even-numbered nets (2, 4 and 8) where several species occurred only at single depth ranges. Net 8 collected the three dominant species plus 3 new ones, indicating the beginning of a shift towards more epipelagic species composition.

4.0 Ctenophores, Amphipods, and Cephalopods (Dhugal Lindsay)

Ctenophore forms that were identified from net samples included several cydippids belonging to the Haeckeliidae (*Aulacoctena acuminata*), the Bathyctenidae (*Bathyctena chuni*), the Pleurobrachiidae (*Hormiphora palmata*, *Pleurobrachia* sp.1), the Mertensiidae (*Charistephane fugiens*), and others. Lobates such as *Kiyohimea usagi* and *Ocyropsis maculata maculata*, the Cestoid *Cestum veneris*, and several *Beroe* species were also caught in net tows. Blue water diving allowed the collection of several individuals of the lobate *Eurhamphaena vexilligera* and the Thalassocalycid *Thalassocalyce inconstans*, in addition to some of the forms listed above.

Twelve species of amphipods were sorted from the live samples, most of them large *Physocephalata* that were easy to spot. Many more species will undoubtedly be found upon examination of the formalin and ethanol-preserved samples. More than half of the gelatinous organisms captured during the blue-water SCUBA dives were host to hyperiid amphipods at varying stages of development. In many cases it was impossible to identify the hyperiid embryos

to species or indeed genus level due to their early developmental stages. Individuals were extracted from the canals or gelatinous matrix of their hosts and placed in ethanol for sequencing. This should allow determination of any species specificity in host/parasite relationships as a factor contributing to species diversity maintenance mechanisms in the pelagic zone. The paucity of species belonging to the *Physosomata* at meso- and bathypelagic depths may have been a consequence of the dominance of these ecosystems by small siphonophores rather than the larger cnidarians that usually host these animals. Submersible dives should be conducted in this area to directly assess the types and numbers of large ctenophore and cnidarian forms to compare with the data gained on amphipods by net systems such as the MOCNESS.

Thirteen species of cephalopods were identified in the MOCNESS samples. Of these, three were octopods (*Cirrothauma murrayi*, *Bolitaena pygmaea*, *Tremoctopus violaceus*), one was a vampyromorph (*Vampyroteuthis infernalis*), and the remaining nine were various squids belonging to at least five major groups (Bathyteuthids, Chiroteuthids, Cranchids, Histioteuthids, and Enoploteuthids). Many larval individuals were also sampled and these were recorded photographically, dissected to obtain tissue for DNA analysis, and preserved in formalin for subsequent taxonomic analysis. Sampling with larger trawls will be necessary to assess the true diversity of the cephalopod fauna at these sites, but the 335 micron mesh yielded specimens in immaculate condition, greatly simplifying taxonomic analyses.

5.0 Decapod Shrimp (Hege Øverbø Hansen)

Samples were analyzed from the 10-m and 1-m MOCNESS (MOC-10 and MOC-1). A total of 18 tows were analyzed for the presence of Decapod shrimp: 11 samples from the MOC-1 and 7 samples from the MOC-10 (Table 2).

	MOC-1	MOC-10
	Tow#	Tow#
Station 1	1, 2	1
Station 2	3, 4	2
Station 3	5, 7, 8	3
Station 4	9,10	4, 5
Station 5	11, 12	6, 7

A total of 366 individuals were sampled and analyzed from MOC-1 and MOC-10.

Dendrobranchiata

Within Dendrobranchiata three genera were identified but identification to species level was not done on these individuals (N=147).

Within Sergestidae, the genera *Sergestes sp.* and *Sergia sp.* were found. Within Benthesicymidae there were at least two different species of *Gennadas* but again, certain identification to species level was not made.

Caridae

All individuals within Caridea were identified to species level (n=219). A total of 19 species were identified, belonging to the families Oplophoridae (17 species), Pandalidae (1) and Pasipheidae (1) (Table 3). Most of the observed individuals belonged to the family Oplophoridae.

Table 3. Decapod species found on the CMarZ Cruise 10 - 30 April 2006. Species that were sent for DNA sequencing are marked (x).									
Dendrobranchiata		Caridea							
Sergestidae	Benthesicymidae	Oplophoridae	DN A	Pandalidae	Pasipheidae	DNA			
Sergestes sp	Gennadas sp	Acanthephyra purpurea (A. Milne Edwards)	х	Parapandalus richardi (Coutiére)	Parapasiphae sulcatifrons (Smith)	х			
Sergia sp		Acanthephyra stylorostratis (Bate)	Х						
		Acanthephyra brevirostris (Smith)	Х						
		Acanthephyra curtirostris (Wood Mason)	Х						
		Acanthephyra microphthalma (Smith)	Х						
		Systellaspis braueri (Balss)							
		Systellaspis debilis (A.Milne Edwards)	Х						
		Systellaspis pellucida (Filhol)							
		Systellaspis cristata (Faxon)	Х						
		Hymenodora gracilis Smith							
		Hymenodora glacialis (Buchholz)	Х						
		Meningodora mollis Smith	Х						
		Meningodora miccyla	х						

Dendrobran	chiata	Caridea			ea			
Sergestidae	Benthesicymidae	Oplophoridae	DN A	Pandalidae	Pasipheidae	DNA		
	(Chace)							
		Meningodora compsa (Chace)	х					
		Ephyrina figueirai						
		Notostomus gibbosus (A.Milne Edwards)						
		Oplophorus spinosus (Brullé)	X					

Species richness of Caridae tended to increase with lower latitudes (Table 4).

Table 4. Number of with Latitude.	different De	capod carid	ean species t	found at the	five stations		
	Stations						
	1	2	3	4	5		
Latitude	33.5	30	25	20	14		
Number of species	5	10	6	10	13		

Most of the individuals sampled were juveniles with a carapace length of less than 13 mm. However, some adult individuals were caught and some of these carried eggs on their pleopods (*Parapasiphae sulcatifrons, Systellaspis debilis, Oplophorus spinosus, Acanthephyra purpurea* and *A. stylorostratis*). For the first three of these species there seems to be a strategy towards eggs that are larger in size and fewer in number. The two latter species had smaller and more numerous eggs. *A. purpurea* and *A. stylorostratis* carried eggs that were developed to a stage where visible larvae could be seen within the eggs and were probably close to hatching.

Thirteen individuals were sent for DNA sequencing (Table 3).

Our main objective for participation on this cruise was to extend our knowledge of the distribution and biodiversity of pelagic shrimp in the deep zones of the Atlantic Ocean. Our goal was to identify all the sampled individuals within the Caridea while on board, and this goal was achieved. Specimens belonging to the suborder Dendrobranchiata were not identified to species onboard. However, post-cruise species identification by experts is possible through the MARBEF Taxonomy Clearing System/MAR-ECO.

Both the taxonomic and molecular results of the decapod shrimp from this cruise will be compared with previous results from the 2004 MAR-ECO cruise on the northern mid-Atlantic

ridge. This will provide new knowledge on vertical and latitudinal variations in distributions, species composition and population structure of pelagic shrimp.

6.0 Mysids (Saramma Panampunnayil)

Five stations were sampled between 33° and 14° N and 70° and 54° W. At each station samples were collected using 1/4-m MOCNESS (upper 500m), 1-m MOCNESS (9 nets, upper 1000m) and 10-m MOCNESS (5 nets, down to 5000m), both day and night. Each sample was split. 50% was preserved in 5% formalin for silhouette analysis and later taxonomic analysis; 50% was preserved in alcohol for taxonomic analysis on board and removal of identified species for barcoding.

Mysids were picked out of the samples preserved in alcohol and identified.

MOCNESS 10: Bathypelagic Mysids. 8 species were recorded.

- Eucopia grimaldii was the most common species and occurred throughout the sampling area and was represented by all life stages (adult and young males, females and juveniles).
- *Eucopia unguiculata*, though a widely distributed and abundant bathypelagic mysid, was encountered at Station 5 only.
- Eucopia sculpticauda was present throughout with high representation at Station 5.
- *Gnathophausia gigas*. Two individuals, probably immature, measuring 57 and 100mm were recorded from Station 1 and Station 5.
- Gnathophausia sp. Two specimens from Station 4 (to be identified later).
- Lophogaster sp. Two specimens from Station 3 and Station 4 (to be identified later).
- Chalaraspidum alatum, a single adult male from Station 5.
- *Boreomysis microps*. This widely distributed bathypelagic form was represented by a single adult male at Station 1.

MOCNESS 1: 3 species were recorded.

- Euchaetomera tenuis was present in three hauls. Each haul contained a single specimen.
- Anchialina agilis. Adult males and breeding females were collected. Usually this species lives in the lower depths, but become planktonic and more active during breeding season.
- *Siriella thompsonii*. Widely distributed cosmopolitan epipelagic species and occurred in the upper 50m.

Six species were removed for DNA sequencing: *Eucopia grimaldii*, *E. unguiculata*, *E. sculpticauda*, *Euchaetomera tenuis*, *Anchialina agilis* and *Sirella thomsonii*.

7.0 Euphausiids (Nancy Copley)

Euphausiids were identified from the live portions of several tows. *Thysanopoda obtusifrons*, a fairly large species (15-20 mm), was commonly found in the samples. Only about 47 individuals from 13 species were identified due to the small amount of time devoted to this activity. There was a shortage of microscopes and the euphausiids can be examined on land post-cruise whereas the gelatinous zooplankton needed to be identified immediately, while still alive. Nineteen identified specimens from eleven species were submitted for barcoding. The following live

species were examined:

Station 1	Station 2	Station 3	Station 4	Station 5
Bentheuphausia amblyops	Euphausia sp. (immature)	Euphausia brevis	none examined	Euphausia americana
Euphausia tenera		Nematoscelis spp.		Euphausia tenera
Nematobrachion flexipes		Stylocheiron abbreviatum		Nematoscelis atlantica
Stylocheiron carinatum		Stylocheiron carinatum		Nematoscelis spp.
Thysanoessa gregaria		Stylocheiron suhmi		Stylocheiron abbreviatum
Thysanopoda obtusifrons				Stylocheiron affine
				Stylocheiron carinatum
				Stylocheiron elongatum
				Thysanoessa parva (?)
				Thysanopoda obtusifrons

8.0 Ostracoda (Martin Angel)

The total number of species sorted from the samples and identified during the cruise was 80. There were several which could not be identified onboard ship so the final number will probably approach 90. This includes 6-8 species that are either certainly or probably novel, which all came from the deep tows. These new species increase the number of species currently known to inhabit

the Atlantic (140) by nearly 6%. For example three individuals of the seven specimens belonging to the deep-living genus *Bathyconchoecia* are each representatives of previously undescribed species; two of the others are strikingly sculptured specimens of a species that has previously been collected at depths of 4000m off NW Africa, but still remains undescribed. The same is true for the 20 or so specimens of a *Fellia* species taken in the deep nets at stations 4 and 5.

A number of other notable species, which are rare in oceanographic collections were taken in the deep tows, including:

- 1. *Gigantocypris dracontovalis*, which is smaller than its better known and more abundant congener *G. muelleri* (of which only a single specimen was recorded) and has golden reflectors in its large naupliar eyes;
- 2. *Mollicia tyloda* that has only been recorded a couple of times since it was first described by G.W.Muller in 1906, and
- 3. *Macroconchoecia macroreticulata* and *M. spinireticulata* only recently described from deep water in the NE Atlantic, which were both abundant in the deeper MOC-10 samples.

The species collected at each station are listed in Table 5, which shows that much higher numbers of species were taken at Station 5. However this increased richness may be in part an artefact that reflects the greater effort devoted to sorting and analysing the MOC-10 #7 samples at station 5. Seventeen of the species were collected at all five stations, but a further four that were not recorded at station 4 are likely to be in those samples, increasing the number of ubiquitous species to 21.

Eleven species were collected for the first time at station 5, including the largest of the halocyprids, *Alacia valdiviae*, which is over 6 mm long and bright red in color, and so unlikely to have been overlooked previously. There were considerable changes in the species dominance. *Orthoconchoecia secernenda* that had been the commonest large ostracod was replaced by *O. atlantica*, *Halocypris globosa* by *Halocypria inflata*, and *Orthoconchoecia secernenda* by *O. atlantica*.

Before the cruise began, I set a target of 50 species to be sequenced. Thanks to the large number of species that made their first appearance at station 5, the target was exceeded. In all, 58 species were picked out for sequencing and these are the first halocyprids ever to be sequenced. They represent 39% of the species known to occur in the whole of the Atlantic (now 148, which includes the new species collected on the cruise) and 25% of the global inventory of planktonic ostracods (230). Hence we have already achieved substantial progress towards providing a powerful identification tool for planktonologists studying this abundant group that has largely been overlooked because of the problems associated with their identification.

	e 5. Listing of planktonic ostracods ide Species list	7					
	Highlighted species sequenced		at all station	ons		at static	on 5 only
	mgmgmen species sequences		Station 1		Station 3		-
1	Alacia valdiviae	Stations	Station 1	Station 2	Stations	Station .	+
2	Archiconchoecemma simula						+
3	Archiconchoecetta bispicula						+
4	Archiconchoecilla versicula						+
5	Archiconchoecinna cuneata			+	+		
6	Archiconchoecissa pljusnini			+	+	+	
7	Archiconchoecissa cucullata s		+				+
8	Boroecia borealis					9	
9	Conchoecetta acuminata						+
10	Conchoecia hyalophyllum		+	+	+	+	+
11	Conchoecia lophura		+	+	+	+	+
12	Conchoecia macrocheira		+	+	+	+	+
13	Conchoecia magna			+			
14	Conchoecia subarcuata						+
15	Conchoecilla daphnoides		+	+	+	+	+
16	Conchoecissa ametra		+	+	+		
17	Conchoecissa imbricata		+	+	+		+
18	Conchoecissa plinthina		+	+	+	+	+
19	Discoconchoecia elegans	+		+			+
20	Euconchoecia chierchiae						
21	Fellia bicornis						+
22	Fellia 'abyssopelagica'					+	+
23	Gaussicia incisa					+	+
24	Gigantocypris dracontovalis				+	+	
25	Gigantocypris muelleri		+				
26	Halocypria globosa	+	+	+	+	+	
27	Halocypris inflata	+	+	+	+	+	+
28	Halocypris pelagica						+
29	Loricoecia loricata		+	+	+		+
30	Loricoecia ctenophora			+			
31	Macroconchoecia macroreticulata		+	+	+	+	+
32	Macroconchoecia spinireticulata		+	+	+	+	+
33	Macrocypridina castanea		+	+			
34	Metaconchoecia sp					+	+
35	Metaconchoecia acuta			+	+	+	+
36	Metaconchoecia discoveryi		+				
37	Metaconchoecia fowleri		_1	+	, I	+	, I
38	Metaconchoecia glandulosa Metaconchoecia inflata		+	+	+	+	+
39	Metaconchoecia inflata			+			+
40	M. aff lunata						+
41	Metaconchoecia kyrtophora Metaconchoecia aff. macromma					+	+
42	Metaconchoecia ajj. macromma Metaconchoecia pusilla		+	+	+	+	+
43	metaconchoecta pustita		+	+	+	+	+

	Species list						
	Highlighted species sequenced		at all stati	ons		at static	n 5 only
		Station 0	Station 1	Station 2	Station 3	Station 4	Station 5
44	Metaconchoecia rotundata			+	+		+
45	Metaconchoecinna arcuata		+	+	+	+	+
46	Metaconchoecinna aff.arcuata			+		+	
47	Mikroconchoecia curta						
48	Mikroconchoecia echinulata		+	+	+	+	+
49	Mikroconchoecia stigmatica						+
50	Mollicia kampta			+			+
51	Mollicia tyloda			+	+		
52	nov sp. A					+	+
53	Orthoconchoecia atlantica		+	+			+
54	Orthoconchoecia bispinosa						+
55	Orthoconchoecia secernenda		+	+	+	+	+
56	Paraconchoecia aequiseta			+	+	+	+
57	Paraconchoecia dasyophthalma			+	+		+
58	Paraconchoecia dorsotuberculata		+	+	+	+	+
59	Paraconchoecia inermis			+		+	+
60	Paraconchoecia mamillata		+	+		+	+
61	Paraconchoecia nanomamillata		+	+	+		
62	Paraconchoecia oblonga A		+	+		+	+
63	Paraconchoecia oblonga B		+	+	+		+
64	Paraconchoecia spinifera		+	+	+		+
65	Paramollicia dichotoma		+	+	+		
66	Paramollicia plactolycos					+	+
67	Porroecia parthenoda		+	+	+	+	+
68	Porroecia pseudoparthenoda						+
69	Porroecia porrecta		+	+			+
70	Porroecia spinirostris	+	+	+	+		+
71	Proceroecia brachyaskos		+	+	+	+	+
72	Proceroecia convexa						+
73	Proceroecia microprocera		+	+	+	+	+
74	Proceroecia procera			+	+		+
75	Pseudoconchoecia concentrica						+
76	Bathyconchoecia 'B'		+				+
77	Bathyconchoecia RB#1		+				
78	Bathyconchoecia RB#2					+	
79	Bathyconchoecia RB#3					+	
80	Bathyconchoecia kornickeri						+
			37	47	35	35	58

9.0 Calanoid copepods in the genus *Euaugaptilus* and the family Scolecitrichidae (Hiroyuki Matsuura and Mikiko Kuriyama)

Calanoid copepods of the genus *Euaugaptilus* primarily inhabit the meso- and bathypelagic zones of the world oceans. The genus encompasses ca. 70 species, which is among the largest number in a single genus of all calanoid copepods. *Euaugaptilus* spp. occur at low abundances and sympatrically with many congeneric species. On the basis of the mouthpart morphology, these copepods are considered to be carnivorous. The shape of their mandible blades vary between species. Many species of *Euaugaptilus* have specialized sucker-like structures on the setae of their feeding appendages, which have been termed "buttons". The high species diversity, the low population density, and the development of the button setae in *Euaugaptilus* suggest a specialization in their food habits in the resource-limited deep sea and thus would be an interesting topic for elucidating speciation and resource partitioning in pelagic communities.

The pelagic copepod family Scolecitrichidae also comprises species distributed widely throughout the world oceans and is among the most species-rich families in the calanoid copepods, encompassing ca. 160 nominal species in 26 genera. The Scolecitrichidae, with its related families, Diaixidae, Parkiidae, Phaennidae, and Tharybidae, possess specialized sensory setae on the maxillae and maxillipeds, and these are considered to be involved in the detection of detrital food particles. Gut-content analyses have shown that scolecitrichid copepods are, in general, omnivores or detritivores with some feeding specializations within the family. The perception of chemical signals has perhaps played a key role in their high species diversity in such a resource-limited environment. These suggest the importance of scolecitrichids in our understanding of the species diversity and of niche-partitioning in the oceanic environment, in relation to their patterns of vertical distribution, feeding specialization, and taxonomic relationships.

The vertical distributions of these copepods have been studied in the Atlantic, Pacific, Indian, and Antarctic Oceans, but most of these studies have dealt with a limited number of species and specimens, hence their vertical patterns extending into the bathypelagic layer and the relationships between genera and species are still poorly known.

On this cruise, we aimed to obtain samples of these copepods, especially bathypelagic species, to compare the community structure between the Atlantic and Pacific, to see differences in the genetics of morphologically similar species, and obtain knowledge pertaining to the phylogeny of each family.

During this cruise, we sorted out 534 *Euaugaptilus* and 464 scolecitrichids, and identified 25 and 22 species, respectively (Table 6). Among those, 24 *Euaugaptilus* and 17 scolecitrichid species were picked out for sequencing. After the cruise, we are going to identify the rest of the individuals, sequence COI and the 12S of these species, and discuss the differences between the Atlantic and Pacific, and the phylogeny of these species.

Table 6. Calanoid copepod species list of the Euaugaptilidae and Scolecitrichidae

AUGAPTILIDAE		SCOLECITRICHIDAE			
Euaugaptilus		Ammalothrix	Scaphocalanus		
E. affinis	E. longimanus	A. paravalida	S. affinis		
E. angustus	E. magnus	A. valida	S. bogorovi		
E. bullifer	E. maxillaris	Heteramalla	S. elongatus		
E. clavatus	E. nodifrons	H. sarsi	S. magnus		
E. elongatus	E. oblongus	Lophothrix	S. major		
E. facilis	E. pachychaeta	L. frontalis	Scolecithricella		
E. farrani	E. palumbii	L. humilifrons	S. dentata		
E. filigerus	E. perodiosus	L. latipes	S. vittata		
E. gracilis	E. rectus	Pseudoamallothrix	Scolecethrix		
E. grandicornis	E. rigidus	P. cenotelis	S. bradyi		
E. hyperboreus	E. squamatus	P. emarginata	S. danae		
E. laticeps	E. tenuispinus	P. obtusifrons	Scottocalanus		
E. latifrons		P. ovata	S. helenae		
			S. securifrons		
			S. thorii		

10.0 Calanoid copepods primarily Aetideidae and Heterorhabdidae (Astrid Cornils)

The CMarZ cruise has given me the first opportunity to have an insight into the diversity and species composition of the subtropical Atlantic. I was able to identify a total of 63 species of calanoid copepods, concentrating on the families of the Aetideidae and Heterorhabdidae (Table 7). Only females and males were identified. Because of the ship movements we were unable to dissect individuals smaller than 2 mm, hence, they are probably under-represented in the species list. A lot of them will only be representatively caught in the 1/4-m MOCNESS. Some individuals of the identified species were taken to be "barcoded".

At first impression the species composition changed considerably throughout the water column, but was not quantified. The upper 200 m (MOCNESS 1, NETS 5-8) were dominated by *Clausocalanus* spp, while the mesopelagic layers were apparently dominated by *Pleuromamma* spp. and *Lucicutia* spp. during the day tows. The heterorhabid *Neorhabdus capitaneus* (13 mm) was identified for the first time in the Atlantic (1000-2000 m), having been described by T. Park in 2000. The samples of the MOCNESS 10 were screened for mainly Aetideidae.

Working so closely with other taxonomists gave me the chance to increase my knowledge on calanoid copepod taxonomy and on other planktonic taxa, the use of image analysis, sampling strategies and DNA barcoding. Sampling with the MOCNESS has also introduced me to a new sampling gear for zooplankton.

Table 7a. Identified species of the Calanoida.

Families	Species	Families	Species
Calanidae	Megacalanus princeps	Phaennidae	Phaenna spinifera
	Mesocalanus	Scolecitrichidae	Lophothrix humilifrons
	tenuicornis		
	Nannocalanus minor		Scaphocalanus
			brevirostris
	Neocalanus gracilis		Scottocalanus helenae
Eucalanidae	Eucalanus elongatus	Arietellidae	Arietellus plumifera
	Pareucalanus	Augaptilidae	Augaptilus sp.
	attenuatus		
	Rhincalanus cornutus		Euaugaptilus magnus
	R. nasutus		Euaugaptilus elongatus
	Subeucalanus crassus		Pontoptilus
Paracalanidae	Calocalanus		Centraugaptilus
	plumulosus		horridus
	Acrocalanus spp.		Haloptilus longicornis
Spinocalanidae	Foxtonia barbatula	Heterorhabdidae	Disseta palumboi
Clausocalanidae	Clausocalanus spp.		Heterorhabdus
			spinifrons
	Ctenocalanus vanus		H. spinifer
Aetideidae	Aetideus acutus		Heterostylites
			longicornis
	Chirundina streetsi		Mesorhabdus
			brevicaudatus
	Chiridiella sp.		Neorhabdus capitaneus
	(bispinosa)		
	Chiridiella sp.	Candaciidae	Candacia longimana
	(pacifica)		_
	Chiridiella sp. (?)	Lucicutiidae	Lucicutia spp.
	Euchirella amoena	Metridiidae	Gaussia princeps
	E. curticauda		Metridia princeps
	E. messinensis		Pleuromamma gracilis
	E. pulchra		P. piseki

Families	Species	Families	Species
	E. rostrata		P. xiphias
	Gaetanus brevicornus		P. abdominalis
	Gaetanus miles	Pontellidae	Pontella securifer
	Pseudeuchaeta		Pontella sp.
	brevicaudata		
	Undeuchaeta major		Pontellina plumata
	Undeuchaeta plumosa	Bathypontiidae	Not identified
Euchaetiidae	Euchaeta marina		
	E. media		
	E. spinosa		
	Valdiviella insignis		

11.0 Other Copepods Identified on RHB06-03. (Leocadio Blanco Bercial)

The following is a list of species that were identified on the cruise that were not listed in the two previous sections.

Table 7b. More identified species of the Calanoida.

Families	Species	Families	Species
Acartiidae	Acartia negligens	Aetideidae	Gaetanus minor
Calanidae	Bathycalanus richardi		Gaetanus pileatus
	Neocalanus robustior	Lucicutiidae	Lucicutia grandis
Candaciidae	Candacia elongata	Metridiidae	Metridia macrura
	Candacia ethiopica		Metridia venusta
	Candacia pachydactila	Phaennidae	Onchocalanus cristatus
	Candacia paenelongimana	Arietellidae	Phyllopus helgae
	Paracandacia bispinosa		Paraugaptilus buchani
Centropagidae	Centropages violaceus	Scolecitrichidae	Scottocalanus persecans
Clausocalanidae	Clausocalanus arcuicornis	Eucalanidae	Subeucalanus monachus
	Clausocalanus furcatus	Megapontiidae	Hyalopontius enormis
	Clausocalanus jobei		
	Clausocalanus lividus		
	Clausocalanus mastigophorus		
	Clausocalanus pergens		

12.0 Larvaceans and Planktonic Molluscs (Russ Hopcroft)

I had two principle purposes during the cruise: general photography of zooplankton, and identification of larvacean species for the barcoding (sequencing) effort.

Photography was an almost full-time task. Approximately 1500 useful images have been taken of ~100 different living species of zooplankton at 4 MPix resolution. Depending on the species, from one to 20 pictures have been taken per specimen. These are currently being reviewed and cleaned-up for posting on the CMarZ and CoML websites. Ultimately these images will be accessed via the CMarZ species pages. Hundreds of additional images were made on the 2 MPix system by other investigators, principally for foraminfera/radiolarians and jellies. All these images will constitute one of the more visible "public" legacies of the cruise.

In regard to the larvaceans, progress during the cruise was disappointing. Only 12 or 13 of the ~70 species described in this group were encountered during this cruise (Table 8). With the possible exception of the smallest MOCNESS, these collecting systems extruded most of the larvaceans, and rendered those remaining unidentifiable in the collections. The Reeve net was generally successful, but densities of animals were unusually low. Even for the Reeve net, there appeared to be a relatively limited time-window over which material in the collection remained in a useful condition, and this may have contributed to an underestimation of species present. Only the most common tropical species were encountered, with the notable exception of the giant "mesopelagic" species, *Bathochordaeus stygius*. There appear to have been several distinct faunal shifts between stations. In the future, some method of slowing the degradation rate of the samples must be found for this specific group; perhaps partial "preservation" with ethanol while sorting the samples will work better.

Table 8. Identified larvaceans. (P = present in low numbers; <math>C = common)

Species	Stn 0	Stn 1	Stn 2	Stn 3	Stn 4	Stn 5
Apendicularia sicula					P	
Bathochordaeus stygius			P	P		
Fritillaria borealis	С	С	P	P	P	
Fritillaria formica				С	С	С
Fritillaria pellucida	С	С	P	P	P	
Fritillaria tenella					P	
Oikopleura cophocerca			С	С	С	P
Oikopleura dioica					P	
Oikopleura fusiformis	С	С				
Oikopleura longicauda	С	С			P	С

Oikopleura rufescens			P	P
Stegosoma magnum			P	P/C
Megalocerus huxleyi				?

Not to be idle and because pelagic molluscs were present in many of the collections, taxonomic attention was expanded to this neglected group. Of the pteropods with calcareous shells (generally Euthecosomes), 20 of the ~33 known species were encountered, along with a suspected 5 species (out of 51) of the naked pteropods (Gymnosomes). Several Pseudothecosomes were observed in the samples, but only one was found in suitable condition for definitive identification (out of 7 species). For the heteropods, 17 of 29 known species were found during this cruise. The nudibranch *Phylliroe* was also collected.

Given that such a large percentage of this group has now been collected, I suggest this material be subjected to 28S sequencing in addition to COI. In several cases, I suspect some of the described species are simply younger forms of other species, and it will be interesting to see what insights arise from the molecular analysis. Tropical Pacific cruises later this year will hopefully fill in some of the missing species.

13.0 Skeletonized Microplankton (Colomban de Vargas, Silvia Watanabe, Yurika Ujiie, and Hui Liu)

The CMarZ team "Skeletonized Microplankton" was comprised of Silvia Watanabe (Museum of Natural History, Buenos Aires, Argentina), Yurika Ujiie (University of Geneva, Switzerland), Hui Liu (Rutgers University, USA), and Colomban de Vargas (Roscoff Marine Station, France). (Figure 9)

During the cruise, our aim was to collect skeletonized microzooplanktonic taxa, isolate and identify the morphospecies, take pictures of specimens, and preserve material for further morphological and genetic analyses. We focused our effort on the planktonic foraminifera, but collected significant data on the radiolarians and phytoplanktonic coccolithophores as well.

These unicellular pelagic organisms are particularly resilient to genetic analyses, in particular *barcoding*, due to their small size and divergent origins, very far from the better-known metazoans. In addition, the relative absence of morphological characters challenges classical taxonomy, and cryptic species appear to be widespread in these groups. The intense

Figure 9. From left to right: Silvia Watanabe, Colomban de Vargas, Hui Liu, and Yurika Ujiie, respectively from Argentina, France, USA, and Switzerland.

biomineralization of their skeletons plays a key role in sea-water chemistry and in the building of km-thick deep-sea sediments. If the large majority of oceanic plankton is remineralized in the water column, the skeletonized microplankton have left in the geological record by far the most complete and well preserved fossil archive, so that a better assessment of species diversity and ecology will allow further understanding of how plankton and paleo-oceans have co-evolved.

Skeletonized microzooplankton were immediately isolated from the fresh, living samples into Petri-dishes. Cells were

individually picked under the dissecting microscope using brushes, and sub-sampled, species by species, into smaller plastic dishes filled with filtered sea-water. The samples were then carefully examined, and representative specimens were photographed before being isolated into a special DNA-extraction buffer that preserves both nucleic acids and carbonate skeletons (GITC, de Vargas *et al.*, unpublished).

In total, 1541 single-cell DNA extractions were realized along the 5 main stations (see Appendix 3 for complete listing). Nineteen morphological species of planktonic foraminifera were observed (Candeina nitida, Globigerina humilis, Globigerinella aequilateralis, Globigerinita glutinata, Globigerinoides conglobatus, Globigerinoides rubber, Globigerinoides sacculifer, Globorotalia crassaformis, Globorotalia hirsute, Globorotalia inflata, Globorotalia menardii, Globorotalia truncatulinoides, Globorotalia tumida, Hastigerina digitata, Hastigerina pelagica, Neogloboquadrina dutertrei, Orbulina universa, Pulleniatina obliquiloculata, Pulleniatina finalis), which represent about half the known, morphologically defined living "species". In

addition, 892 pictures of living specimens were taken before DNA extraction in order to document the morphological aspects – color, texture, etc.– of living cells (Figure 10), which is a first in foraminifera research.

Species diversity and abundance varied significantly between the 5 stations (Figure 11). The populations were rich, abundant, and contained large adult specimens at Station 1, while much

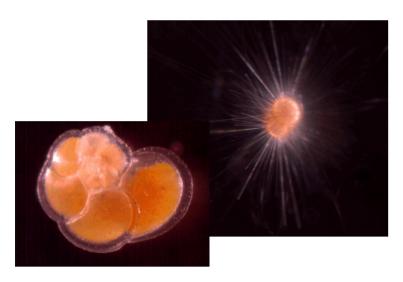


Figure 10. The spinose species Globigerinoides sacculifer and the non-spinose taxon Globorotalia menardii. Characters such as color and spines are not preserved after the death of the cell, but maybe significant for taxonomy. (Photos by C. de Vargas)

smaller and rare cells were observed at the following stations. This is probably linked to the moon cycle. Most species of foraminifera – mainly those living in shallow water reproduce at or close to the full moon, which occurred in the evening of April 13th at our Station 1.

April 2006

Details of morphospecies distribution are not shown in this short final report. However, at each station, a clear depth zonation was revealed thanks to the stratified sampling. An example is given in Figure 12, which shows the number of DNA extractions performed for each MOCNESS-Net (1 to 8, from the deepest to the shallowest). Physical parameters of the water column, measured in real-time by the MOCNESS, are shown on the left part of the Figure 12. We note the presence of unique morphospecies in deep layers below the Deep Chlorophyll Maximum (DCM, ~50m), such as *G. truncatulinoides* or *G. hirsuta*. Species diversity increases toward surface waters, with a peak right within the DCM. The details of morphospecies distribution with depth will be studied by Sylvia Watanabe, using the archive samples preserved in ethanol or formalin.

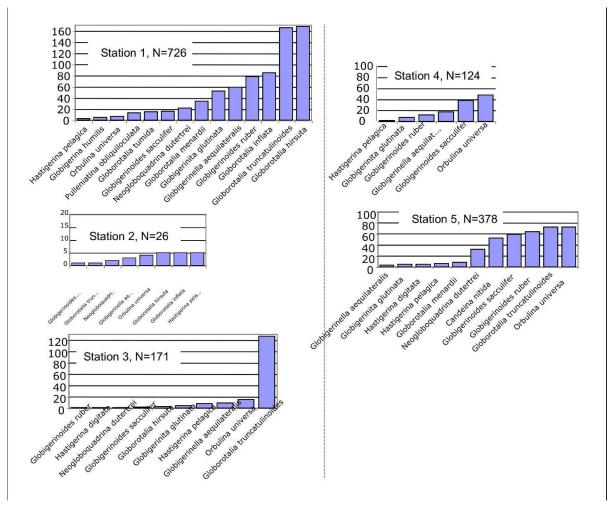
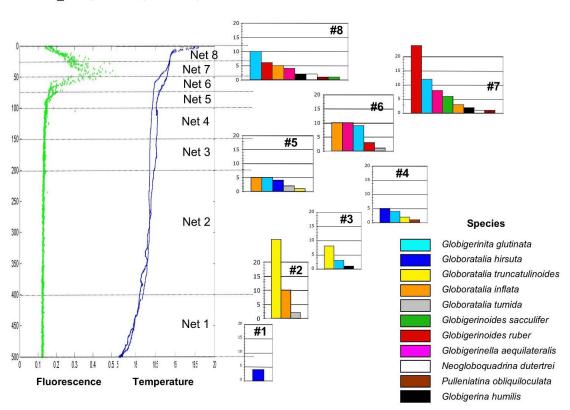
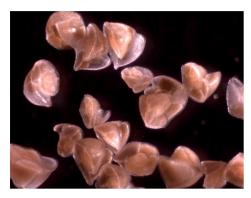



Figure 11. Number of DNA extractions realized per species and at each station. Note that all graphs are on the same scale, except for Station 2 where abundance was very low.

Future genetic analyses will allow us to solve the biological meaning of interesting morphological and ecological patterns we observe at the morphospecies level. For instance, we detected a clear change in the coiling direction of the shells of *Globorotalia truncatulinoides* between Stations 1 and 3 (Left from Right coiling shells, Figure 13A.)

The change in coiling direction in *Globorotalia truncatulinoides* is a classic in Micropaleontology and has been related to glacial-interglacial cycles. In our cruise, we observed this change not only between stations but also within depths at the same station (Figure 13B, data by S. Watanabe). Our data confirm that the Left-coiling *truncatulinoides* prefers cooler water, both in horizontal

and vertical dimensions of the oceans, and genetic data will tell us if this morphologic change is



CMarZ 2006, Station 1, MOC 1/4, tow #2: number of DNA extraction for foraminifera

Figure 12. Number of single-cell specimens used for DNA extraction collected by depth at Station 1.

associated with speciation.

Besides foraminifera, our team worked on two other groups of giant protists building elaborate skeletons: the radiolarians and coccolithophores. During most dives, Larry Madin and Erich Horgan collected wonderfully preserved colonial radiolarians. Detailed photographs of the colonies, individual cells and their symbionts were taken, and pieces of single colonies were preserved for DNA (frozen) and morphological (formalin and ethanol) analyses (Appendix 4).

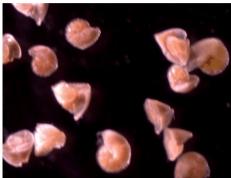


Figure 13A. Populations of Left-coiling and Right-coiling G.

th CMARZ_2006, Station 1, MOC 1/4, tow #2: number of DNA extraction for foraminifera 3. (Photo by C. de

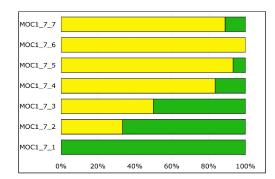


Figure 13B. Ratio of Left (green)/Right (yellow) coiling shells in the population of *G. truncatulinoides* sampled at Station 3. Data were obtained by Silvia Watanabe using the formalin preserved fraction.

Finally, an intense effort to collect coccolithophores was done by Hui Liu, graduate student at Rutgers University, as described next.

Hui Liu addition:
"It is really a great
experience and rare
opportunity for me to
be here. The twenty
days of intense
working, learning, and
enjoying the deep blue

not only advanced my knowledge and skills in exploring the mystery of marine life, but also transformed my vision of research and life.

Other than helping with the MOCNESS sample processing, and sorting foraminifera once in a while, my major job during the CMarZ cruise was to collect coccolithophore samples for biodiversity and biogeography studies of key coccolithophore taxa, using a combination of genetic, molecular, and morphological analyses. Sea water was collected at each station from different depths

using a bucket (surface), Niskin bottles (within the DCM and in intermediate waters within the mixed layer) and phytoplankton nets with 5 or 10 μ m mesh size (~15 m depth). The water sample was transferred immediately to the main lab and filtered through 5 different types of membranes: Poly-Ether Sulphone for total DNA extraction, Polycarbonate for Scanning Electron Microscopy (SEM), Cellulose nitrate for optic Microscopy, and ANODISC and AAWP for Fluorescent In Situ Hybridization (FISH). Altogether 750 liters of water were filtered and 121 filters were obtained. Ten out of twenty-nine DNA samples were selected to perform DNA extraction on board using the DNeasy plant mini kit. Large Subunit (LSU) ribosomal DNA was then amplified using the Polymerase Chain Reaction (PCR) method with primers specific to the Haptophyta (coccolithophores): Hapto4 and Leuk34r. The amplified DNA will be further used for a clone

library and DNA sequencing analyses after the cruise. Optic microscopy, SEM and FISH samples will be analyzed as well to identify the boundaries between species and life cycle stages at different depths. In addition, basic cruise track data (salinity, temperature, fluorometry, pCO2, etc.) will be needed to characterize the water-masses and hydrography of the samples' locations.

The cruise is ending soon. I'm very happy to get nice samples for my future work and I've learned a great deal. I'd like to thank everyone who worked together as a team and made everything possible, who patiently taught me how to collect and process the MOCNESS samples, who introduced different groups of zooplankton and techniques which I'm not familiar with, who helped me with collecting hundreds of liters of water, who kindly built the filtration holder for me, who generously loaned me whatever I asked for, and who made jokes and good coffee when I got tired. Finally, I want to say to Martin, 'You are the inspiration of all of us'."

14.0 Microzooplankton – Tintinnids (Barbara Costas)

14.1 Cruise Objectives

The objective was to sample the epipelagic and if possible mesopelagic regions of the tropical/subtropical waters west of the mid-Atlantic ridge to collect and identify tintinnids. This includes both traditional identification through preservation with Lugol's Iodine Solution (Acetic), "Lugal's", as well as amplification of the internal transcribed spacer region (ITS) of the rDNA gene and potentially the COI region as well.

14.2 Sampling

Two basic approaches to sampling were used for the collection and identification of tintinnids. The first sampling approach involved collection of bulk water from two depths via a 30L Niskin bottle. The second sampling approach involved examining samples collected in the smaller nets (1/4-m MOCNESS, Reeve net, and various hand-deployed Ring nets) and picking out individual tintinnids for identification and DNA sequencing. Table 9 contains the details of the various sampling activities at the stations.

14.2.1 Bulk Water Sampling: A total of 60L of water was used per depth, so water was combined from two casts. From this water a sample (500ml) was taken for later chlorophyll *a* and pigment analysis (via High Profile Liquid Chromatography, or HPCL) by filtering onto a borosilicate glass fiber filter and preserving at -80°C. A 500 ml sample of water was preserved with Lugol's to a final concentration of 5%. This water will be examined via microscopy back at the University of Connecticut's Department of Marine Sciences (UCONN DMS) for identification and enumeration of the tintinnids to at least genus level. Any naked ciliates will also be enumerated and identified where possible. The water was then concentrated gently via reverse filtration using a 20 μm

sieve. The concentrated water was then separated into 5 aliquots (1/2, 1/6th [two replicates], and 1/18th [two replicates] of the concentrate volume) and filtered onto 3.0 μ m cellulose nitrate filters. These filters were placed into 1.5 ml tubes and stabilized with a DNA prep buffer. Upon returning to UCONN DMS, the DNA will be extracted from the filters and primers specific to the Phylum Ciliophora and Class Spirotrichea will be used to amplify the ITS region. Libraries of the ciliates present at the various depths and locations will then be created allowing for comparison between depths and stations.

Table 9. Sampling activities associated with Tintinnid identification during the cruise. The table contains the cruise event number, station and cast information, and sampling activities and depth.

Event Number	Station	Cast	Sampling Activity	Depth
RB10306.004	1	2	10μm Hand Ring Net	10m
RB10406.004	1	1	Niskin bottles	10m & 75m
RB10406.008	1	2	¹ / ₄ -m MOCNESS	500-350m, 350-
				200m, 200-150m,
				150-100m, 100-
				75m, 75-50m, 50-
				25m, and 25-0m
RB10406.010	1	2	Reeve Net	500m
RB10606.003	2	2	Niskin bottles	15m & 75m
RB10606.005	2	3	Reeve Net	500m
RB10906.002	3	5	Reeve Net	200m
RB10906.009	3	3	Niskin bottles	15m & 75m
RB10906.016	3	2	10μm Hand Ring Net	10m
RB11306.002	4	7	Reeve Net	200m
RB11306.007	4	2	5μm Hand Ring Net	15m
RB11306.011	4	5	64µm Hand Ring Net	Surface
RB11306.016	4	4	Niskin bottles	45m & 100m
RB11306.014	4	8	Reeve Net	200m
RB11506.003	5	9	Reeve Net	200m
RB11506.014	5	5	Niskin bottles	40m & 100m
RB11506.012	5	10	Reeve Net	200m
RB11706.006	5	6	¹ / ₄ -m MOCNESS	350-230m, 230-
				170m, 170-150m,
				150-120m, 120-
				110m, 110-90m,
				90-70m, 70-0m
RB11706.008	12	5	Reeve Net	200m

14.2.2 *Net Collection*:

14.2.2.1 Quarter-meter MOCNESS nets: Where possible, a sub-sample of the ¼-m MOCNESS live fraction was examined for the presence of any swimming (live) tintinnids and/or loricas. A sampling of empty loricas was preserved in Lugol's for further identification back at UCONN DMS. If any "live" animals (swimmers) were seen, they were pulled from the sub-sample, photographed, and set aside for DNA analysis through single cell PCR amplification and sequencing of the ITS region, and if possible COI. This work will be completed at UCONN DMS, although preliminarily analysis of preserved loricas was conducted during the cruise. Table 10 contains preliminary identification data based on the lorica analysis.

Table 10. List of ciliates found in the various net casts examined. The event number matches the cruise event log and Table 9. Tintinnid designation was the preliminary number given to tintinnids (or nakeds) based on lorica shape and size as well as swimming behavior (live). Please refer to Appendix 5 for images and preliminary identification of the tintinnids listed. The comment column describes how the tintinnid (or naked) was processed.

Event Number	Tintinnid	Comments
	Designation	
RB10306.004	Tin 1	Individual single cells picked from ½ of sample.
		Also digital images and Lugol's preserved
		sample.
	Tin 2	Individual single cells picked from ½ of sample.
		Also digital images and Lugol's preserved
		sample
	Tin 3	Individual single cells picked from ½ of sample.
		Lugol's preserved sample.
RB10406.008		
1. Net 1	Tin 2 and Tin 8	Lugol's preserved sample (no lives)
2. Net 2	Tin 2, 3, 5, and 6	Lugol's preserved sample (no lives)
3. Net 3	Tin 2, 3, 5, 6, and 8	Lugol's preserved sample (no lives)
4. Net 4	Tin 2, 3, 5, 6, and 8	Lugol's preserved sample (no lives)
5. Net 5	Tin 2, 2a, 3, 6	Lugol's preserved sample (no lives)
6. Net 6	Tin 2, 2a	Lugol's preserved sample (no lives)
7. Net 7	No loricas observed	Lugol's preserved sample (no lives)
8. Net 8	Tin 3 and 6	Lugol's preserved sample (no lives)

Event Number	Tintinnid	Comments
	Designation	
	1	
RB10406.010	Tin 2	Individual single cells picked from sample.
		Lugol's preserved sample.
	Tin 5	Individual single cells picked from. Also digital
		images and Lugol's preserved sample.
	Tin 6	Individual single cells picked from. Also digital
		images and Lugol's preserved sample.
	Tin 7	Individual single cells picked from sample.
		Lugol's preserved sample. No picture
	Tin 8	Individual single cells picked from sample.
		Lugol's preserved sample. No picture
RB10606.005	Tin 8	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 2	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 2a	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 9	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 6	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 5	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 10	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture of live.
RB10906.002	Tin 11	Individual single cells picked. Individuals
		placed into DNA buffer (bulk). Picture and
		Lugol's preserved.
	Tin 2	Individuals placed into DNA buffer
	Tin 12	Individual single cells picked. Picture of live.

Event Number	Tintinnid Designation	Comments	
	Tin 13	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved.	
	Tin 14	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved.	
	Tin 6	Individuals placed into DNA buffer	
	Tin 5	Individual single cells picked	
RB10906.016	Tin 11	Few, but picked individuals and placed into	
		DNA buffer	
RB11306.002	Tin 2	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved.	
	Tin 11	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved	
	Tin 15	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved	
	Tin 16	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved	
	Tin 17	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved	
	Tin 18	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk). Picture and	
		Lugol's preserved	
	Tin 9	Individual single cells picked. Picture and	
		Lugol's preserved.	
	Tin 19	Individual single cells picked. Picture and	
		Lugol's preserved.	
	Tin 2a	Individual single cells picked	
	Tin 5	Individual single cells picked. Individuals	
		placed into DNA buffer (bulk).	
	Tin 14	Individuals placed into DNA buffer.	

Event Number	Tintinnid Designation	Comments	
	Tin 20	Individual single cells picked. Picture and	
	1111 20	Lugol's preserved	
	Tin 8	Saw empty loricas	
	111110	Baw empty forteas	
RB11306.007	Naked A	Individual single cells picked. Picture and	
1200.007	T (dilod 11	Lugol's preserved	
	Naked B	Picture and Lugol's preserved	
	Naked C	Picture and Lugol's preserved	
	Tin 19	Individual single cells picked	
	1111 17	maryladar singre cens prened	
RB11306.011	Tin 19	Individual single cells picked	
	, ,	1	
RB11306.014	Tin 15	Individuals placed into DNA buffer	
	Tin 17	Individuals placed into DNA buffer	
	Tin 19	Individuals placed into DNA buffer	
	Tin 14	Individuals placed into DNA buffer	
	Tin 5	Individuals placed into DNA buffer	
	Tin 16	Individuals placed into DNA buffer	
	Tin 2	Individual single cells picked	
RB11506.003	Tin 11	Individual single cells picked. Picture and	
		Lugol's preserved.	
	Tin 16	Individual single cells picked. Picture and	
		Lugol's preserved.	
	Tin 19	Individual single cells picked. Picture and	
		Lugol's preserved.	
	Naked 21	Individual single cells picked. Picture and	
		Lugol's preserved.	
	Tin 15	Individual single cells picked. Picture of live.	
	Tin 22	Individual single cells picked. Picture of live.	
	Tin 17	Individual single cells picked. Picture of live.	
	Tin 5	Individuals picked into DNA buffer	
	Tin 8 Saw empty loricas		
Tin 20 Saw empty lo		Saw empty loricas	
	-		
RB11506.012	Tin 16	Individuals picked into DNA buffer	
	Tin 11	Individuals picked into DNA buffer	
	Tin 19	Individuals picked into DNA buffer	

Tintinnid	Comments	
Designation		
Tin 5	Individuals picked into DNA buffer	
	No tintinnids seen (empty loricas or live)	
	No tintinnids seen (empty loricas or live)	
Tin 20	Individual picked for single cell. Picture of live.	
	Also preserved empty loricas.	
Tin 17	Preserved empty loricas (Lugol's)	
Tin 22	Preserved empty loricas (Lugol's)	
Tin 20	Preserved empty loricas (Lugol's)	
Tin 22	Preserved empty loricas (Lugol's)	
Tin 6	Individual picked for single cell. Picture of live	
	Preserved empty loricas (Lugol's)	
	Preserved empty loricas (Lugol's)	
Tin 8	Preserved empty loricas (Lugol's)	
Tin 22	Preserved empty loricas (Lugol's)	
	No tintinnids seen (empty loricas or live)	
Tin 19	Individual single cells picked. Picture of live	
	Individual single cells picked. Picture of live.	
	Individual single cells picked. Picture of live.	
	Individual single cells picked. Picture of live.	
	Individual single cells picked. Picture of live.	
Tin 20	Saw empty loricas.	
	Tin 5 Tin 20 Tin 17 Tin 22 Tin 20 Tin 22 Tin 6 Tin 22 Tin 8 Tin 22 Tin 8 Tin 19 Tin 11 Tin 16 Tin 15 Tin 23	

14.2.2.2. Sixty-four μm Reeve Net Tows: Water from Reeve Net tows was passed through a 150 μm mesh and then concentrated via gentle filtration with a 20 μm mesh. This concentrate was then examined for live tintinnids. Assumed similar species (based on general characteristics and swimming pattern) were then picked. Digital photos were taken, some were preserved with Lugol's for further identification once back at UCONN DMS, and others set aside for DNA analysis through single cell PCR amplification and sequencing of the ITS region, and for many the

COI as well. In addition, "same species" that seemed abundant were put into DNA prep buffer, which will allow extraction of the entire genome. Most single cell PCRs (Stations 1-4) were completed on-board the R/V Ron Brown. Station 5 and the actual sequencing analysis will be completed at UCONN DMS. Table 10 contains preliminary identification data based on lorica analysis.

14.2.2.3. Surface Ring Net Tows (5, 10, and 64 μ m): Samples from several tows were examined for the presence of tintininds. Live tintinnids were picked, photographed, and, where possible, preserved in Lugol's for further identification. Others of similar species were set aside for DNA (single cell) analysis. The PCR amplification for these samples was completed on the R/V Ron Brown, but sequence analysis of the ITS region and potentially the COI region will be completed at UCONN DMS. Table 10 contains any preliminary identification data based on lorica analysis. Note that the surface tows throughout the cruise had no or very few tintinnids, and therefore limited samples exist from these tows.

14.3 Discussion/Preliminary Observations

Little sampling of this region has previously been done in regards to the tintinnid community. Preliminary work has identified 22 potential tintinnid species and one potential naked ciliate species ("nakeds"). Appendix 5 contains images and preliminary identification where possible. Further examination of the preserved samples as well as finalizing the DNA analysis will clarify the number of species picked and identified. In addition, it is expected that examination of the preserved samples will provide for additional species, *i.e.* those smaller tintinnids that could not be properly captured in the relatively large-mesh nets (64 µm).

The cruise produced ten community DNA samples (two depths at each station) and ten corresponding preserved water samples from the bulk water sampling. In addition, there are Lugol's preserved water samples from the various Reeve Net tows examined as well as individual loricas preserved from the these and other net samples (see Table 9). Over 500 tintinnids were picked for single cell DNA analysis (this includes multiples from assumed similar species), as well as an additional 400 animals placed into DNA prep buffer for bulk extraction of potentially 12 preliminarily identified species.

Prior to the cruise, we would have expected to find the tintinnids in the upper water column, *i.e.* near the phytoplankton (their expected food source). Examination of the samples from the various surface (to 15 m) ring net tows indicates that, at least at the five stations sampled, the tintinnid community is generally below 15 m. The two ¼-m MOCNESS tow samples that were examined for tintinnids (the only net system capable of capture), indicates that the tintinnid biomass is quite deep in the water column, and in the case of the MOC-¼ cast 2, down to 500m.

In fact, in both and 6 no swimmers) the samples (surface

The overall tintinnids preliminary identification species at There is also several of the present the sampling one at Stations two at Stations

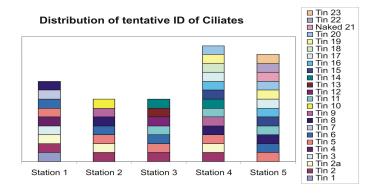


Figure 14. Distribution of tentative species found by station. Blocks are only representative of presence/absence, not abundance. Station 4 had the most diversity followed by Station 3. Several tentative species were found at multiple stations.

MOC-¼ casts 2 tintinnid loricas (or were found to be in from the top net waters).

diversity of the based on the work and indicates the most Stations 4 and 5. the potential that same species were throughout much of region, including 1 through 4 and 2 through 5. (See

Table 10 and Figure 14). Preliminary work does not indicate that any one species was present at all 5 stations; however, the analysis of the bulk water DNA may show otherwise.

15.0 Pelagic fishes (Tracey Sutton)

The large-gear bathypelagic sampling conducted during the 2006 CMarZ cruise aboard the NOAA research vessel Ron Brown provided a unique opportunity to sample and census deep-pelagic fishes that are often missed by standard trawling procedures (i.e., smaller, but more numerous forms that pass through the mesh of fisheries-style trawling gear). The combination of discrete depth sampling via the MOCNESS, fine-mesh nets designed and constructed specifically for this endeavor, and an experienced operating crew has generated a valuable and quantitative collection of specimens from the poorly known bathypelagic realm. A brief summary of quantitative methods and preliminary results are provided below.

15.1 Methods

The primary collecting gear for deep-pelagic fishes were the 1-m and 10-m MOCNESS midwater trawls, outfitted with 333-µm mesh nets (excepting the initial oblique deployment net of 3-mm mesh). Immediately following gear retrieval and sample wash-down, all fish specimens were sorted from the catch and processed completely in a systematic fashion. All specimens were identified, measured to the nearest 0.1 mm (standard length) and enumerated. Biomass (g wet weight) was estimated for all specimens using taxon-specific length/weight regressions. Abundance and biomass data were then pooled for each net sample, tow, and station to gain a quantitative view of fish assemblage structure, both in terms of biodiversity and relative composition. Tissue samples were taken of selected species for DNA-barcoding analyses.

15.2 Results

15.2.1 Assemblage Structure. A total of 3,965 fish specimens were collected, representing minimally 127 species (84 genera), from 42 families. The high ratio of genera and families to total species number is often a truer measure of diversity than species counts *per se*, as high counts of the latter are often the result of taxonomic 'splitting' of certain focus groups. A complete species list, with raw abundances (not normalized for volume filtered) by station is presented in Appendix 7. Two things were readily apparent from initial scan of these data: 1) we did not approach an asymptote for species versus effort, as reflected by the high numbers of new species in later trawls; 2) excepting the numerical dominance of the genus *Cyclothone* (68% of all

specimens), diversity as a function of species number per total specimen abundance was quite high – roughly two out of three bathypelagic species were represented by less than five specimens.

As expected for low-latitude bathypelagic ecosystems far removed from topographic features (i.e. ridges, canyons), fish biomass was quite low. The entire fish catch from the cruise amounted to just under 500 g wet weight biomass. As with abundance, the genus *Cyclothone* dominated the biomass of the assemblage, but to a lesser degree than with numbers, since the biomass contribution by large dragonfishes (e.g. *Rhadinesthes, Eustomias, Photonectes*) was quite significant.

Integration of current knowledge on species' vertical distributions with catch data from this cruise suggests some degree of contamination from shallower depth strata, particularly from mesopelagic myctophid species (Diaphus, Lepidophanes), but this amount was not major compared to the taxa that we caught that are considered truly bathypelagic. These taxa include the ceratioid anglerfishes (8 species from 5 families), the bathypelagic eels (Eurypharynx, Saccopharynx, and Serrivomer), the great swallowers (*Chiasmodon* and *Pseudoscopelus*), and the whalefishes (*Cetostoma* and Rondeletia). Perhaps the best indicator of the discreteness of the bathypelagic sampling in these waters was what we didn't get – the upper mesopelagic zone here is generally dominated by myctophids (Diaphus, Notolychnus, Myctophum) and lightfishes (Vinciguerria and Pollichthys) and shallow hatchetfishes (Maurolicus, Valencienellus). These represented a minor component of abundance and biomass, but did add to the species richness total. A brief foray into the mesopelagic zone during the last MOC10 deployment (MOC-10-07-Net 4) showed fairly conclusively that the low catches we had observed in the deep tows were a true measure of the low biomass at depth rather than a flaw in the fishing ability of the new MOCNESS configuration. Indeed, nearly 1,000 specimens were taken in this net, including some very large myctophid and dragonfish specimens. This sample would be considered a large haul with standard midwater trawls (i.e. Tucker trawl with 3-mm mesh).

15.2.2 Rare species: One of the most exciting features of bathypelagic trawling is that every tow potentially contains undescribed or very rare species. Some of the notable catches from this cruise were:

- 5 species of the genus *Eustomias* (most cruises usually generate only one or two specimens); this genus is an ideal target for addressing the oceanic species concept. There are presently 115 described species in this genus, all separated by a single character (barbel form). Tissue was taken from all for barcoding, which may help unlock this mystery.
- Male anglerfishes from 5 families were taken. The taxonomy of male ceratioids is so poorly known due to their rarity and undersampling, keys do not exist for most species. As with *Eustomias*, fish tissue was taken from all to match them with keys for females, thus enabling the construction of a key for the most speciose bathypelagic fish group.

- Leptostomias sp. nov. (1 specimen): this is one of the most well-defined genera of dragonfishes, all of which I am quite familiar with. All described species have a barbel at least 50% of their body length (this specimen is 10%) that terminates in a simple bulb with either one or two filaments. This specimen has a barbel with well-developed tentacles (> 12 in number), each of which is innervated and vascularized.
- Pseudoscopelus "sp. A" cf. *obtusifrons* (1 specimen): this specimen varies from its nearest neighbor (P. obtusifrons) in the pattern of photophores and the form of the premaxillary teeth, both of which are diagnostic characters for the genus.
- Astronesthes cf. *indicus* (1 specimen): I am quite familiar with this tropical species, and the specimen that we took was shorter (lower photophore counts) and had a longer barbel than the classic form of the species.

16.0 Larval Fish (C.B. Lalithambike Devi)

The zooplankton collected using MOC1 and MOC10 were analyzed in the ship's lab immediately after each tow. The fish larvae were picked live from the whole sample and were kept in the cold room for further analysis. The subsampled zooplankton preserved in ethanol and formaldehyde were also examined and the larvae picked out.

The fish larvae were identified into different taxa.

- 43 species belonging to 18 families were present in the live samples analyzed.
- The rest of the samples were preserved in formaldehyde for further studies after the cruise.
- Maximum abundance and diversity(4 families and 7 species) were observed at lat 29° 57'N and lon 71° 01'W (MOC1 Tow 3 Net 5).
- Abundance and diversity decreased from there. Only 2 families with 7 species were found at 25°00'N and 59°56'W (taken from 0-1000m).
- At lat 33° 38'N and lon 69° 47'W, 5 species were encountered in 4 families (MOC10 Tow 1 Net 4).
- In all the three locations, the mesopelagic groups Myctophidae and Gonostomatidae were dominant.
- Two of the *Cyclothone* species (*C. braueri* and *C. pallida*) contributed the most to the numerical abundance.
- Maximum species diversity was observed in the family Myctophidae (15 species).
- Notoscopelus resplendens and Benthosema glaciale were the dominant species found in the area.
- Thunnus sp. was found only in one sample (MOC10 Tow5 Net 4) at 19° 49'N and 54° 44'W.
- The members of the Percoids were rare.
- 15 species were given for barcoding.

The lanternfish family Myctophidae is the most widespread family of midwater fish in the world ocean. Their larvae are highly prominent in the open ocean plankton samples.

17.0 Team DNA Sequencing (Rob Jennings, Paola Batta Lona, Brian Ortman, Ebru Unal, Leo Blanco Bercial)

Samples for DNA analysis were preserved in nondenatured 95% ethanol for long-term storage after DNA extraction. Most samples were extracted within a few days of sorting and placement in 95% ethanol. For species smaller than ~25mm³, at least one intact individual was retained from at least one collection as a physical voucher. Up to three individuals from the remaining collections were removed and the entire organism extracted. For species larger than ~25mm³, an intact individual from one collection was retained where possible, as long as three other individuals were present from which to remove a small portion for extraction (i.e., at least 4 total individuals). If fewer than four individuals were collected, the smallest portion allowable for DNA extraction was removed from each from a non-taxonomically important region of the specimen.

DNA extraction was performed with the Qiagen DNeasy Kit, using standard protocols. Tissues were dissected under sterile conditions, and digested with proteinase K until no solid pieces of tissue were visible. Purified genomic DNA was eluted in Buffer AE, supplied in the DNeasy Kit. Elution volumes varied to reflect original individual size, but in general were 100-200 L.

An approximately 650 base pair region of the cytochrome oxidase C subunit I (COI) gene was amplified using standard primers and thermal cycler profiles, performed in a Perkin-Elmer 480 thermal cycler. PCR products were electrophoresed through 1% agarose/TBE gels, stained with ethidium bromide, and visualized under UV light. Target bands were purified from the PCR reactions using the Qiagen PCR Cleanup Kit, following manufacturer's protocols. Purified COI PCR products were eluted in Buffer EB (10mM Tris) in preparation for sequencing.

Sequencing reactions consisted of purified COI products, one of the PCR primers as sequencing primer, and the BigDye 3.1 Terminator sequencing chemistry (ABI). The reactions were one-quarter standard volume (1/4X) and were performed in an ABI 9600 thermal cycler according to manufacturer's protocols. The sequences were then purified by ethanol/EDTA/sodium chloride precipitation, followed by centrifugation to pellet the sequenced DNA. Sequences were washed with 80% ethanol and re-centrifuged, then dissolved in 10 L high-quality deionized formamide (HiDi, ABI) in preparation for sequence determination. This was conducted on a 4-capillary 3130 DNA Sequencer (ABI) using a 50cm capillary array and standard operating conditions. A one-hour electrophoresis time on the 3130 produced approximately 500-700 base pair reads in one direction, providing complete or almost complete bi-directional coverage of the COI gene fragment.

Both DNA strands were aligned for each single individual sequenced, and checked against each other for discrepancies. All discrepancies were corrected by eye (or, if discrepancies were not easily resolvable, the sequences were deemed unreadable and the PCR repeated) before producing edited, finalized COI barcodes.

The molecular group had an extremely successful cruise. We assembled our fully functional lab before the ship left port, and were already running test PCRs and sequencing reactions while underway to the first station. After an initial burst of sequencing of some of the samples from Stations Zero and One, the team had to develop a modified sequencing reaction cleanup protocol. We discovered that the high humidity and salty air were causing precipitation in our ethanol and EDTA solutions. Upon fixing this problem, the sequencer ran trouble-free, and a lot of hard work reduced the backlog of samples to a large extent.

Combining Stations 0-5 (and including Station 3b), team DNA catalogued over 1200 individual organisms, comprising 523 species from 12 phyla (Table 11). Of these, we extracted DNA from about 770 individuals, and were successful in PCR amplifying roughly 80% of these individuals. Complete, edited barcodes (requiring good sequence reads in both directions) were obtained for about 100 species, and processing is still ongoing for another 100 species. Given our goal of sequencing three individuals per species, the ~200 COI barcodes obtained *in barco* reflect a sequencing effort of many hundred reactions. This level of output reflects the hard work and perseverance of the entire DNA team and represents perhaps an order of magnitude higher throughput than most land-based labs of our type and size typically yield.

Table 11. Species collected and submitted for sequencing and individuals with DNA extracted.

Taxonomic group		# Species Collected	# Individuals Extracted
Arthropods			
	Amphipoda	31	47
	Copepoda	138	190
	Mysidacea	6	
	Other Crustacea	18	23
	Euphausiidae	14	20
	Ostracoda	58	100
Cnidaria			
	Anthozoa	1	0
	Hydrozoa	103	166
	Scyphozoa	7	12
Mollusca			

Taxonomic group		# Species Collected	# Individuals Extracted
	Gastropoda		107
	Other Mollusca	27	17
Others			
	Cephalochordata	1	2
	Chaetognatha	1	1
	Ctenophora	22	31
	Echinodermata	1	1
	Larvacea	12	26
	Nemertea	1	3
	Polychaeta	3	4
	Thaliacea	14	18
	Pisces (larval)	15	
	Total	523	768

Team DNA did not get to as much on-board analysis and comparison of the DNA barcodes we generated as we might have liked. Nevertheless, many engaging conversations with the taxonomists have left us with intriguing molecular puzzles to pursue. Some of these questions reflect ongoing or proposed projects, while others came up *de novo* as we worked. These lines of research can be partly answered once we finish analyzing the barcodes already collected; full answers may require more samples and sequencing. Some of these questions involve using bulk extraction and cloning of amplified DNA to identify prey items in the guts of several species (we have gut samples from fish suspected of eating siphonophores, as well as from siphonophores suspected of eating fish). Others involve sequencing two alternate forms of what has to date been described as a single species (e.g., a "large" and "small" form, or a form with colored spots and a form without spots) to see if they truly belong to the same species. In many instances, connecting the taxonomic question to the molecular methodologies required to answer it might never have happened (or at least taken much longer to arise) if not for the presence of both kinds of experts on this cruise.

Apart from initiating research questions, the sequences collected on this cruise are a tremendously valuable addition to the catalogue of DNA barcodes for marine zooplankton, particularly in the under-sampled deep waters trawled on this cruise. As stated by others, although overall biomass was low in these deep layers, species diversity was quite high, allowing us to obtain DNA barcodes for a vast array of species. Our collections include many of the same species from different stations, which will enable us to investigate the spatial scale of genetic cohesiveness in the future. Although many zooplankton species are usually thought to have huge abundances and effective population sizes, the various regimes we moved through over the course of our cruise

track (subtropical, Sargasso, tropical, etc.) could possibly create barriers to gene flow that might reveal themselves as we analyze our samples more fully.

18.0 Silhouette photography, CMarz web site (Nancy Copley and Dicky Allison)

18.1 Silhouette Photography (N. Copley)

Silhouette photographs were taken of two MOC-1 night tows (8 nets each), from stations 1 and 2 (MOC-01-002 and MOC-01-003) for later digital length and abundance analysis. In order to accomplish the photography, the ship's salinity room was converted into a darkroom. This room proved adaptable, after a few modifications, due to its small size and double entry which excluded almost all light. The overhead lights had to be removed because there was no separate light circuit independent of the rest of the Hydo lab in the salinity room. Heavy black cloth was placed over both the inner and outer doors to keep out the light and duct tape was used to cover the internal lights of the Guildline Autosal which could not be turned off or moved. Following a seminar on using the WHOI Digitizer program which is used to measure and count zooplankton, the darkroom method of taking silhouette photographs was demonstrated to all those who were interested in seeing this technique.

In the wet lab, samples were split with a Motoda box splitter to a degree that allowed a sample to lie in a single layer (one specimen thick) in an 8" x 10" plexiglass box, typically between zero split and 1/16th split. In the darkroom, a sheet of photographic paper (Ilford multigrade IV RC Deluxe, 8" x 10") was labeled with tow, net and split information using a waterproof pen and placed in the box. A collar was inserted to hold the paper down and prevent plankton from slipping underneath, and then the sample was gently poured into the box. Timing the moment of exposure to the rocking of the ship was attempted so that the sample was not congregated on one side of the film but this was not always successful. A camera flash held about 3' above the sample was used to expose the film which was then developed using Kodak Polymax T developer (1-2 minutes), Stop Bath (10 seconds), and Rapid Fixer (3 minutes). The films were washed in a tray of circulating water for at least 10 minutes before rinsing with a dilute solution of Photo Flo to prevent spotting and hung to dry. Scanning the photographs and analyzing them will be done post-cruise.

18.2 CMarZ Web site (N. Copley and D. Allison)

A web site for the cruise was set up just prior to sailing and was maintained using ssh and ftp during the cruise. The url is www.cmarz.org/CMarZ Cruise April. "24/7" internet access had only recently become available at sea and we used it to the maximum extent possible on the Ron Brown. Both the Chief Scientist reports and the Teacher-at-Sea daily logs were posted. A photo gallery of the science party, of animals found in the samples, and of life on board the ship were

also made available on these pages. Several short film clips were placed on the site: the dive boat being launched down the side of the Ron Brown, several types of gelatinous zooplankton swimming, the launching the three MOCNESS systems, an overview of how the samples were retrieved from the net and initially examined, and a view of the gene sequencer and associated computer output. Periodic updates to the cruise track were posted. A subdirectory was created for media outlets to download high resolution photographs and movie clips, www.cmarz.org/CMarZ Cruise April/images press. These were accessed widely by print and internet sites worldwide.

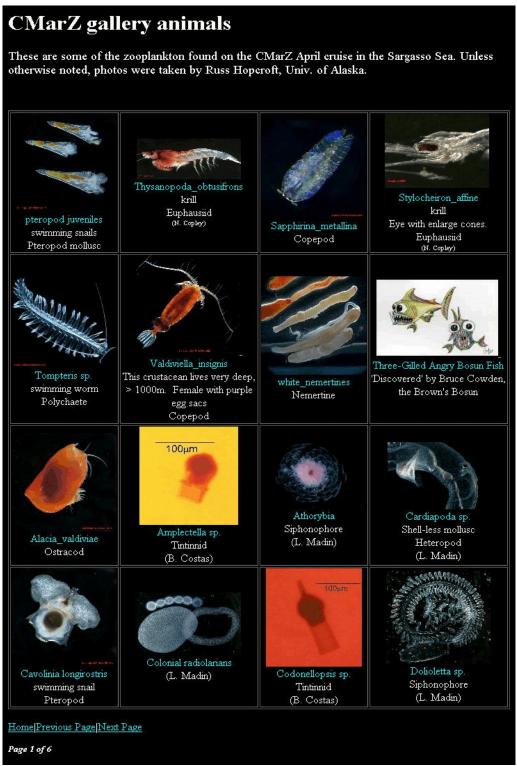


Figure 15. Page from the cruise website gallery of zooplankton showing a variety of the zooplankton captured at sea.

19.0 Training on Zooplankton Sampling and Molecular Analysis (Chaolun Li)

As a researcher from the Institute of Oceanology, Chinese Academy of Sciences, and a member of CMarZ, I was pleased to participate in this CMarZ cruise funded by NOAA and to achieve my expected objectives.

Zooplankton sampling in the deep sea: A practicable and effective sampling method is essential to biodiversity study in the deep sea. With the advent of multiple opening-closing net systems in the mid-1900s, high-resolution sampling of the bathypelagic and abyssopelagic zones became possible. One of my objectives on this cruise was to become familiar with the MOCNESS, which was used to sample zooplankton throughout the water column. I received substantial training with the structure, working principles, and operation of the MOCNESS. I participated in the operation of the gear from the installation and loading of the nets to the setup and testing of the MOCNESS electronics. I also learned how to control the towing of the nets in realtime through the use of the deck unit and software controls and display.

Training of the molecular analysis of zooplankton: Shipboard molecular analysis of zooplankton was one of the most successful aspects of work on this cruise. Another of my objectives was to learn as much as possible about the molecular analysis of zooplankton. With the kindness and patience of the people in the DNA sequencing group, I experienced the whole process of COI analysis of zooplankton. Ebru Unal taught me about the process from DNA extraction and purification to PCR amplification. Rob Jennings showed me how to make a gel, do electrophoresis, and image analysis. This training will advance my skills in molecular analysis on zooplankton and help to unify the molecular approaches for zooplankton research ongoing at our institute in China. This will help to produce coordinated data from the China Sea and ensure its integration into the wider global database.

20.0 ARMADA Teacher at Sea Project (Joseph Catron,)

20.1 Objectives

As an ARMADA Teacher at Sea, I had the basic responsibility of participating in the CMarZ scientific endeavor in a capacity that would benefit the research process. In addition it was expected that I keep a journal of my experiences on the Ron H. Brown, and make these journals accessible via the Internet. Funding for my travel, and participation were provided by the ARMADA Project, through the University of Rhode Island. This program, in part, is designed to immerse science teachers in a real-world scientific investigation aboard NOAA ships. It is ARMADA's expectation that these experiences will enrich the teacher, and in turn be shared with their colleagues and students. Beyond my basic requirements, I wanted to obtain a few practical

ideas from the CMarZ project that I could develop into lesson plans, learn of career opportunities that my students may benefit from, remain in contact with my classroom, and gain a better appreciation for the ocean, which I teach about without having ever spent time at sea.

20.2 Outcomes

The basic expectations of my participation in the scientific process were met. Much of the scientific work in the CMarZ project required expertise in taxonomic identification of zooplankton. This skill is not easily transferable in a short amount of time. Therefore, I did not aid in this process, although I would have enjoyed learning to become proficient in identifying at least one major group of organisms. I did learn many specifics about the zooplankton that live in the pelagic oceans. The DNA barcoding lab was engaged in problem-solving and also under a tight schedule, so direct participation in their work was not possible. I did however get to spend time in the lab learning the process of DNA extraction, amplification, and sequencing. My direct support of the CMarZ project came from the help I provided in record keeping, launching and retrieving the MOCNESS systems, preserving specimens, and in general helping anywhere I was needed or could be used. I feel I was an asset to the CMarZ project in this respect.

While interacting with the participants on the CMarZ study, I was able to develop two lesson plan ideas, and I am working out the details of a third lesson. One lesson will involve students using silhouette photography, used by Nancy Copley at WHOI. I will have students use silhouettes to compare abundance, diversity, and biomass between the pelagic zones. Another lesson idea I developed was related to COI genes and microarrays. I penciled out a lesson that would teach students, in general, how a microarray chip can be used to test for species presence from a mixed DNA sample collected in a plankton tow. The third lesson is currently still in the planning stage. I would like to come up with a way to integrate the physics of light and pigments with the biology of bioluminescence of deep-sea organisms. Although these lessons are not in a final and ready-to-use format, I am pleased to have 3 relevant and creative lessons plan ideas.

The daily journal I was required to write, and post on the Internet worked well, thanks to Dicky Allison from WHOI. She was able to help edit my journal writing, and post my writings on the CMarZ Cruise Website. I was able to use this protocol to communicate with my students. My classes were covering animal taxonomy at the time, which was also occurring daily aboard the ship. I used many of the journal entries to introduce the students to different marine taxonomic groups. Each day, a question was posed to the students. They were asked to respond to me using email. This process was slow. I was slightly disappointed not to receive more answers in a timely fashion. This is primarily a reflection on not being able to communicate directly with my classroom. In general however, I feel the journaling and classroom connection was successful.

To address all of the things I have learned during this cruise would require a lengthy response.

Having never been to sea, much of what I experienced was novel and each day was filled with a plethora of learning. One of the most important things I think my students will benefit from is what I learned about how important it is to be a scientifically literate person. During the cruise, press conferences occurred and reporters later printed what we were accomplishing on this project. In some instances, their reporting was grossly distorted. This provided me with a two-fold lesson. First, there is a need for the average person to be scientifically literate, and the other is that what appears in the general media about science may not always be accurate. All students should strive to become literate in science, as well as intelligently skeptical of what they read. I learned to better appreciate the great expanse of the ocean, as well as more details on its nature than I will include in this report. I am sure the next time we study the ocean in class, it will be with greater insight and detail. Finally, I have several career ideas to share with students when I return. These careers range from working as an engineer aboard a NOAA ship, to conducting scientific research at the Woods Hole Oceanographic Institution.

20.3 Acknowledgments

This cruise has been rewarding and enjoyable. All of my basic needs were well met, and my professional expectations were accomplished. I would like to thank Jill Johnen and Andrea Kecseks from the ARMADA Project for making this cruise possible. I am thankful to Ann Bucklin from AVERY Point, for helping me get set up to participate in the CMarZ project. I was disappointed that I did not get to meet her in person. I would like to give special thanks to Peter Wiebe, Nancy Copley, and Dicky Allison, from WHOI, for helping me find my niche, aiding me in meeting my goals, and for making this cruise a success.

CRUISE PARTICIPANTS Science Party (Name, Institution)

Peter Wiebe (Chief Scientist) Woods Hole Oceanographic Institution, USA Dicky Allison Woods Hole Oceanographic Institution, USA

Martin Angel National Oceanography Centre, UK

Leo Blanco Bercial University of Oviedo, Spain

Joe Catron Billings High School, Billings, Montana, USA Nancy Copley Woods Hole Oceanographic Institution, USA

Astrid Cornils Alfred Wegener Institute, Germany
Barbara Costas University of Connecticut, USA
Colomban de Vargas Station Biologique, France

Lalithambika Devi National Institute of Oceanography, India Hege Øverbø Hansen Institute of Marine Research, Norway

Russ Hopcroft University of Alaska, USA

Erich Horgan Woods Hole Oceanographic Institution, USA

Rob Jennings University of Connecticut, USA
Mikiko Kuriyama University of Tokyo, Japan
Chaolun Li Institute of Oceanology, China
Dhugal Lindsay JAMSTEC, Japan (& Australia)

Hui Liu Rutgers University, USA

Paola Batta Lona University of Connecticut, USA

Larry Madin Woods Hole Oceanographic Institution, USA

Hiroyuki Matsuura University of Tokyo, Japan
Brian Ortman University of Connecticut, USA
Francesc Pagès Institut de Ciències del Mar, Spain

Saramma Panampunnayil National Institute of Oceanography, India

Tracey Sutton Harbor Branch Oceanographic Institution, USA

Yurika Ujiie University of Geneva, Switzerland Ebru Unal University of Connecticut, USA

Silvia Watanabe Universidad de Buenos Aires, Argentina

Ship's Officers and Crew

Gary Petrae Captain
Stacy Birk Commander
Elizabeth Jones Lieutenant
Jackie Almeida Ensign
James Brinkley Ensign

Priscilla Rodriguez Lieutenant Commander U.S. Public Health Service

Frank Dunlop Chief Engineer

Keegan Plaskon 1st Assistant Engineer Gordon Gardipe 2nd Assistant Engineer Wayne Smith 3rd Assistant Engineer

Nick DiNicola Wiper
Ben Zielke Wiper
Bruce Cowden Chief Bosun

David Owen Bosun Group Leader Reginald Williams Deck Utilityman Victoria Carpenter Able Bodied Seaman Phil Pokorski **Ordinary Seaman** Mary O'Connell **Ordinary Seaman** Jesse Byrd Ordinary Seaman Leo Wade Ordinary Seaman Richard Whitehead Chief Steward

Karen Bailey Chief Cook Herb Watson 2nd Cook

Michael Moats
Jonathan Shannahoff
Jeff Hill
General Vessel Assistant
Chief Survey Technician
Lead Electronics Technician

APPENDIX 1. Event Log.

)1A 1. EV				Local Tir	ne	Event	Uni		or. Time	Latitude	Longitude	Water	Cast	Scientific	
									(UC	- í	(°N)	(°W)	Depth	Depth		
eventno	Instr	cast#	Station#	Mth	Day	hhmm	s/e	Mth		hhmm	Deg. Min.	Deg. Min.	(m)	(m)	Invest.	Comments
	Depart			4	10	1410	S	4	10		3251.21	7956.65			Wiebe	Leave dock
rb10106.001		1	0	4	11	1432	S	4	11	1832	3302.723	7502.006	4034		Hopcroft	64 mm mesh; Over stbd side
	RingNet5	1	0	4	11	1446	e	4	11	1846	3302.725	7502.003	4035	100m	Hopcroft	Tow complete
	MOC1	1	1	4	13	0618	S	4	13	1018	3331.467	6957.678	5337	1000	Madin	
	MOC1	1	1	4	13	0922	e	4	13		3335.900	6953.460	5337	1000	Madin	successful
rb10306.003		1	1	4	13	1040	S	4	13	1440	3337.281	6951.884	5334	100ft	Madin	
rb10306.004		1	1	4	13	1044	S	4	13	1444	3337.281	6951.884	5334	10	Costas	
rb10306.005		1	1	4	13	1135	e	4	13	1535	3337.268	6951.872	5334	10	Costas	Tow complete
rb10306.006		1	1	4	13	1140	S	4	13	1540	3337.268	6951.872	5334	100ft	Madin	good dive
	MOC.25	1	1	4	13	1357	S	4	13	1757	3337.306	6951.803	5334	500	Wiebe	Electronic delays
	MOC.25	1	1	4	13	1516	e	4	13	1916	3338.386	6948.949	5334	500	Wiebe	abort-only net 0 opened-power?
rb10306.009	MOC10	1	1	4	13	1606	S	4	13	2006	3338.548	6947.691	5332	5000	Wiebe	deployment successful
rb10406.001	PoleNet	1	1	4	14	0032	S	4	14	0432	3341.720	6930.531	5336	0	Dhugal	trying for Jellyfish
rb10406.002	PoleNet	1	1	4	14	0035	e	4	14	0435	3341.720	6930.531	5336	0	Dhugal	
rb10406.003	MOC10	1	1	4	14	0745	e	4	14	1145	3340.245	6913.418	5332	5000	Wiebe	no net2- no codend; net3 not open
rb10406.004	Niskins	1	1	4	14	0930	S	4	14	1330	3339.286	6911.782	5303	75	Costas	30L water collection for ciliates; 75mx2;
rb10406.005	Niskins	1	1	4	14	1006	e	4	14	1406	3339.286	6911.787	5306	10	Costas	75mx2; 10mx2;
rb10406.006	ReeveNet	1	1	4	14	1047	S	4	14	1449	3339.269	6911.777	5310	100	Hopcroft	
rb10406.007	ReeveNet	1	1	4	14	1055	e	4	14	1455	3339.269	6911.794	5306	100	Hopcroft	successful; to wet lab
rb10406.008	MOC.25	2	1	4	14	1329	S	4	14	1729	3335.803	6924.606	5333	500	Wiebe	good
rb10406.009	MOC.25	2	1	4	14	1550	e	4	14	1950	3333.748	6929.379	5337	500	Wiebe	good
rb10406.010	ReeveNet	2	1	4	14	1608	S	4	14	2008	3333.73	6929.568	5340	500	Hopcroft	in
rb10406.011	ReeveNet	2	1	4	14	1651	e	4	14	2151	3333.73	6929.566	5340	500	Hopcroft	out
rb10406.012		2	1	4	14	1805	S	4	14	2205	3337.589	6931.554	5342	1000	Wiebe	flow meter not working; brought in and
																untied and launched again.
rb10406.013	MOC1	2	1	4	14	2051	e	4	15	0050	3333.904	6938.33	5339	1000	Wiebe	successful recovery
rb10406.014		2	1	4	14	2144	S	4	15	0144	3333.335	6940.168	5339	1	Madin	,
rb10406.015	Dive	2	1	4	14	2302	e	4	15	0302	3334.670	6938.356	5341	1	Madin	lots of jellies
rb10406.016	MOC.25	3	1	4	14	2342	s	4	15	0342	3334.251	6938.859	5337	500	Wiebe	tow aborted-loss of signal
rb10506.001	MOC.25	3	1	4	15	0025	e	4	15	0425	3333.144	6938.968	5340	500	Wiebe	Ţ.
rb10506.001b			1-2	4	15	0030	S	4	15						Wiebe	Heading for station 2
rb10506.001c	Arrival		2	4	15	1730	e	4	15						Wiebe	Arrival station 2
rb10506.002		4	2	4	15	1756	s	4	15	2156	2959.999	6959.92	53578	500	Wiebe	deployed successfully
	MOC.25	4	2	4	15	1808	e	4	15	2208	2959.270	6959.12	5376	500	Wiebe	communication failure, early return
	MOC1	3	2	4	16	0042	S	4	16	0442	2959.711	7001.648	5355	1000	Madin	
	MOC1	3	2	4	16	0339	e	4	16	0739	2953.241	7004.464	5355	1000	Madin	good tow
	Niskins	2	2	4	16	0425	S	4	16		2952.679	7004.798	5377	75	Costas	30L 75mx3 for ciliates and coccoliths
	Niskins	2	2	4	16	0514	e	4	16		2952.679	7004.798	5377	15	Costas	50mx1 for coccoliths; 15mx2 for ciliates
	ReeveNet	3	2	4	16	0545	s	4	16		2952.513	7004.441	5377	500	Hopcroft	
	ReeveNet	3	2	4	16	0630	e	4	16	1030	2952.493	7004.441	5377	500	Hopcroft	
	MOC1	4	2	4	16	0658	s	4	16	1058	2952.09	7004.530	5380	1000	Madin	
rb10606.008		4	2	4	16	0930	e	4	16		2951.405	7008.427	5384		Madin	

					Local Ti	me	Event	Univ	v. Coo (UCT	r. Time Γ)	Latitude (°N)	Longitude (°W)	Water Depth	Cast Depth	Scientific	
eventno	Instr	cast#	Station#	Mth	Day	hhmm	s/e	Mth		hhmm	Deg. Min.	Deg. Min.	(m)	(m)	Invest.	Comments
	MOC10	2	2	4	16	1529	s	4	16	1929	2949.77	7014.292	584	5000	Wiebe	lots of misstarts and malfunctions during tow
	MOC10	2	2	4	17	0416	e	4	17	0816	2929.273	7029.875	5386		Madin	success with a few wrinkles
rb10706.002		4	2	4	17	0450	S	4	17	0850	2928.902	7030.385	5380	200	Hopcroft	
	Reevenet	4	2	4	17	0510	e	4	17	0910	2928.799	7030.348	5380		Hopcroft	
	RingNet5	3	2	4	17	0525	S	4	17	0925	2928.806	7030.349	5384		Hopcroft	
rb10706.005		3	2	4	17	0547	e	4	17	0947	2828.720	7030.381	5384		Hopcroft	II. I'. C. C. I'. 2
rb10706.006	-		2-3	4	17	0700	S	4	17	1100	2928.82	7030.47	5383		Wiebe	Heading for Station 3
	Arrive	5	3	4	19 19	0617	e	4	19 19	1017 1033	2500.009 2459.903	6000.084	5987	200	Wiebe	Arrive Station 3
	ReeveNet ReeveNet	5	3	4	19	0633 0700	S	4	19	1100	2459.903	5959.915 5959.505	6000 5995		Hopcroft Hopcroft	64 micron mesh 200m only
rb10906.003 rb10906.004		4	3	4	19	0700	e s	4	19	1100	2459.783	5959.303	5995		Hoperoft	surface. 64micron
rb10906.005		4	3	4	19	0702	e	4	19	1102	2459.755	5959.311	5996		Hoperoft	surface. 04micron
	PullTest	4	3	4	19	0801		4	19	1201	2459.134	5959.311	5995	U	Wiebe	Pull test on newly reterminated cable
	MOC1	5	3	4	19	0904	S	4	19	1304	2500.027	5956.727	5989	1000	Madin	Smooth launch, trouble with wraps
	MOC1	5	3	4	19	1748	e	4	19	2148	2452.428	6008.611	5631	4000	Wiebe	Two opened only; broken cable
rb10906.009	Niskins	3	3	4	19	1814	s	4	19	2214	2452.381	6008.650	5628	75	Costas	3x75m; 1x50m; 2x20m
rb10906.010		3	3	4	19	1920	e	4	19	2320	2451.938	6008.342	5628		Costas	End of 6 casts
	ReeveNet	6	3	4	19	1925	s	4	19	2325	2451.938	6008.342	5677		Hopcroft	
rb10906.012		6	3	4	19	1948	e	4	19	2348	2451.385	6008.230	5674		Hopcroft	
rb10906.013	RingNet75	1	3	4	19	1955	s	4	19	2355	2451.420	6008.320	5675		DeVargas	20m and 50m down
rb10906.014		1	3	4	19	2048	e	4	20	0048	2451.324	6008.240	5677		DeVargas	
rb10906.015	Dive	3	3	4	19	2104	s	4	20	0104	2450.336	6008.179	5670		Madin	
rb10906.016	RingNet75	2	3	4	19	2125	s	4	20	0125	~2450.0	~6008.0	5700		DeVargas	
rb10906.017	RingNet75	2	3	4	19	2216	e	4	20	0216	~2450.0	~6008.0	5760		DeVargas	OK
rb10906.018		3	3	4	19	2228	e	4	20	0228	2450.426	6005.489	5765		Madin	
rb10906.019		3	3	4	19	2334	S	4	20	0334	2450.385	6004.8107	5745		Wiebe	Some questions about sparse catch
	MOC10	3	3	4	20	0925	e	4	20	1325	2447.485	6021.868	5838		Madin	Broken tab again!
	MOC1	6	3	4	20	1114	S	4	20	1514	2449.340	6026.812	5848		Madin	Well checked out system.
rb11006.003	MOC1	6	3	4	20	1130	e	4	20	1530	2449.445	6026.800	5632	1000	Wiebe	Lost signal when net at 70m. Abort. Only Net 1.
rb11006.004	MOC1	7	3	4	20	1244	S	4	20	1644	2452.133	6029.228	5698	1000	Wiebe	Replaced U/W communication module
	MOC1	7	3	4	20	1604	e	4	20	2004	2457.692	6032.159	5754		Wiebe	Looked good.
rb11006.006		4	3	4	20	1636	s	4	20	2036	2458.678	6032.504	5721		Madin	Zooned good.
rb11006.007		3	3	4	20	1700	s	4	20	2100	2458.732	6031.854	5703		DeVargas	
rb11006.008		3	3	4	20	1732	e	4	20	2132	2458.749	6031.552	5702		DeVargas	
rb11006.009	Dive	4	3	4	20	1732	e	4	20	2132	2458.749	6031.552	5700		Madin	
rb11006.010	MOC1	8	3	4	20	1909	s	4	20	2309	2459.966	6030.776	5714	1000	Wiebe	Successful deployment
	MOC1	8	3	4	20	2246	e	4	21	0246	2503.2939	6035.552	5764	1000	Wiebe	only 7 depths. No #8.
rb11006.012		4	3	4	20	2315	s	4	21	0315	2503.223	6036.3374	5811	30	Hopcroft	50 mwo. ~30m deep. At depth 20 min.
rb11006.013		4	3	4	20	2347	e	4	21	0347	2503.355	6037.007	5811		Hopcroft	
	MOC10	4	3	4	21	0028	S	4	21	0428	2503.367	6037.536	5789		Madin	
rb11106.002		1	3	4	21	0819	s	4	21	1219	2503.477	6051.272	5668		Madin	Pilot whales(16) to stbd. Basking.
	MOC10	4	3	4	21	1126	e	4	21	1526	2503.049	6058.849	5789	5000	Madin	Great tow. Finally!
rb11106.004	Transit		3-4	4	21	1211	S	4	21	1611			5792		Wiebe	heading for stn 4.

					Local Ti	ne	Event	Uni	v. Cool	r. Time	Latitude (°N)	Longitude (°W)	Water Depth	Cast Depth	Scientific	
eventno	Instr	cast#	Station#	Mth	Day	hhmm	s/e	Mth		hhmm	Deg. Min.	Deg. Min.	(m)	(m)	Invest.	Comments
rb11106.005	Dive	5	3-4	4	21	1358	s	4	21	1758	2457.522	6040.701	5641	117ft	Madin	
rb11106.006	HandNet5	1	3-4	4	21	1410	s	4	21	1810	2457.522	6040.701	5641	50	DeVargas	5um modified Hensen
rb11106.007	HandNet5	1	3-4	4	21	1450	e	4	21	1850	2457.256	6039.874	5694	50	DeVargas	25cm dia> 65cm dia.
rb11106.008	Dive	5	3-4	4	21	1450	e	4	21	1850	2457.256	6039.874	5694	117ft	Madin	
rb11106.009	Transit		3-4	4	21	1500	s	4	21	1900	2457.222	6039.773	5719		Wiebe	Heading for stn. 4
	Arrive		4	4	23	0040	e	4	23	0441	2000.077	5500.081	5213		Wiebe	On Station 4
rb11306.002	ReeveNet	7	4	4	23	0052	S	4	23	0454	2000.156	5500.111	5218	200	Hopcroft	Collecting microzoos
rb11306.003		7	4	4	23	0113	e	4	23	0513	2000.321	5500.089	5196		Hopcroft	
rb11306.004	MOC10	5	4	4	23	0142	S	4	23	0542	2000.030	5459.805	5181	5000	Madin	good deployment
rb11306.005	MOC10	5	4	4	23	1256	e	4	23	1656	1949.387	5444.379	4949	5000	Madin	Amazing catch esp. net 4
rb11306.006	Dive	6	4	4	23	1336	S	4	23	1736	1949.103	5443.337	4945		Madin	
rb11306.007	HandNet5	2	4	4	23	1349	s	4	23	1749	1942.211	5443.487	4945	50	DeVargas	5 um mesh
rb11306.008	HandNet5	2	4	4	23	1430	e	4	23	1830	1949.496	5444.146	5041	50		5 um mesh
rb11306.009	Dive	6	4	4	23	1431	e	4	23	1830	1949.496	5444.146	5045	107ft	Madin	
rb11306.010	MOC1	9	4	4	23	1521	s	4	23	1921	1949.227	5443.585	5042	1000	Wiebe	smooth entry
rb11306.011	RingNet5	5	4	4	23	1640	s	4	23	2040	1947.821	5441.345	4987	0	Hopcroft	
rb11306.012	RingNet5	5	4	4	23	1715	e	4	23	2115			4987	0	Hopcroft	
rb11306.013	MOC1	9	4	4	23	1839	e	4	23	2239	1945.720	5437.532	4996	1000	Wiebe	Lost collar/bucket Net #3
rb11306.014	ReeveNet	8	4	4	23	1900	S	4	23	2300	1945.720	5437.300	5007	200	Hopcroft	
rb11306.015	ReeveNet	8	4	4	23	1930	e	4	23	2330	1945.720	5437.300	5007	200	Hopcroft	
rb11306.016	Niskin	4	4	4	23	1935	S	4	23	2335	1945.625	5436.905	5016		Costas	3x100m
rb11306.017	Niskin	4	4	4	23	2040	e	4	24	0040	1945.822	5436.740	5043		Costas	3x45m
rb11306.018	RingNet75	5	4	4	23	2055	s	4	24	0051	1945.832	5436.737	5030	300	Hopcroft	less than 200m
rb11306.019	RingNet75	5	4	4	23	2126	e	4	24	0127	1946.827	5436.121	5043	300	Hopcroft	
rb11306.020	MOC1	10	4	4	23	2152	s	4	24	0152	1947.120	5435.625	5037	1000	Wiebe	
	MOC1	10	4	4	24	0119	e	4	24	0519	1949.426	5428.627	5037	1000	Madin	
rb11406.002	Dive	7	4	4	24	nd	s	4	24	nd	1949.400	5428.630	nd	22.8	Madin	74ft
rb11406.003	Dive	7	4	4	24	0330	e	4	24	0730	1949.198	5428.826	4771	22.8	Madin	74ft
rb11406.004	HandNet75	1	4	4	24	0357	s	4	24	0757	1949.181	5428.828	4769	nd	Yurika	
rb11406.005	HandNet75	1	4	4	24	0415	e	4	24	0815	1949.342	5428.694	4766	nd	Yurika	
rb11406.006			4-5	4	24	0430	s	4	24	0830	1949.363	5428.710	4773		Wiebe	Heading for Stn.5
rb11506.001	On Station		5	4	25	0830	e	4	25	1230	1359.956	5500.016	5295		Wiebe	Arrive on Stn. 5
rb11506.002	ReeveNet	9	5	4	25	0837	s	4	25	1237	1359.962	5500.029	5289	200	Hopcroft	200 mwo; 20m/min
rb11506.003		9	5	4	25	0859	e	4	25	1259	1400.023	5500.090	5291	200	Hopcroft	
rb11506.004	MOC1	11	5	4	25	0916	s	4	25	1315	1400.174	5459.976	5296	1000	Madin	good deployment
rb11506.005		11	5	4	25	1238	e	4	25	1638	1401.042	5455.089	5323	1000	Wiebe	good haul - long net 7
	Dive	8	5	4	25	1309	s	4	25	1709	1401.103	5454.636	5322	29.8	Madin	97ft
	RingNet5	6	5	4	25	1325	s	4	25	1725	1401.119	5454,610	5320	0	Hopcroft	handnet really (no wire used)
rb11506.008		6	5	4	25	1335	e	4	25	1735	1401.137	5454.617	5320	0	Hopcroft	2 handnets at this time
rb11506.009		3	5	4	25	1338	s	4	25	1738	1401.114	5454.624	5322	15	DeVargas	5um mesh
rb11506.010		3	5	4	25	1406	e	4	25	1806	1401.144	5454.631	5325	15	DeVargas	5um
	Dive	8	5	4	25	1406	e	4	25	1806	1401.149	5454.631	5325	29.8	Madin	97ft
rb11506.012		10	5	4	25	1440	s	4	25	1840	1401.132	5454.617	5323	200	Hopcroft	
rb11506.013		10	5	4	25	1506	e	4	25	1906	1401.132	5454.634	5322		Hopcroft	
1011300.013	1100 101 101	10		-	23	1500		-	23	1700	1701.132	J-J-1.UJ-T	3322	200	rioperori	

					Local Tir	ne	Event	Univ	v. Coo	r. Time	Latitude	Longitude	Water	Cast	Scientific	
									(UCT	")	(°N)	(°W)	Depth	Depth		
eventno	Instr	cast#	Station#	Mth	Day	hhmm	s/e	Mth		hhmm	Deg. Min.	Deg. Min.	(m)	(m)	Invest.	Comments
rb11506.014	Niskins	5	5	4	25	1515	S	4	25	1915	1401.137	5454.634	5327	100	Costas	3x100m
rb11506.015	Niskins	5	5	4	25	1622	e	4	25	2022	1401.131	5454.629	5326	100	Costas	3x47
rb11506.016	RingNet75	6	5	4	25	1635	S	4	25	2035	1401.570	5454.495	5330	50	DeVargas	
rb11506.017		6	5	4	25	1655	e	4	25	2055	1401.570	5454.495	5330	50	DeVargas	
rb11506.018		12	5	4	25	1725	s	4	25	2126	1402.499	5453.482	5383	1000	Wiebe	
rb11506.019		12	5	4	25	2041	e	4	26	0041	1405.102	5448.879	5371	1000	Wiebe	
rb11506.020	MOC10	6	5	4	25	2156	S	4	26	0156	1405.830	5446.800	5366	5000	Wiebe	
	MOC10	6	5	4	26	1001	e	4	26	1401	1412.948	5427.378	5312	5000	Madin	good tow
	MOC25	5	5	4	26	1027	S	4	26	1427	1413.542	5426.688	5310	500	Wiebe	
	MOC25	5	5	4	26	1229	e	4	26	1629	1415.430	5424.227	5304	500	Wiebe	
	MOC10	7	5	4	26	1410	S	4	26	1810	1416.930	5421.960	5299	5000	Wiebe	
	MOC10	7	5	4	27	0338	e	4	27	0738	1420.497	5357.916	5299	5000	Madin	good tow
	ReeveNet	11	5	4	27	0415	S	4	27	0815	1420.848	5357.240	5279	200	Hopcroft	
	ReeveNet	11	5	4	27	0441	e	4	27	0841	1421.145	5357.376	5283	200	Hopcroft	
rb11706.004		7	5	4	27	0453	S	4	27	0853	1421.449	5357.315	5287	20	DeVargas	40 mwo
rb11706.005		7	5	4	27	0520	e	4	27	0920	1422.291	5357.009	5287	20	DeVargas	
rb11706.006		6	5	4	27	0612	S	4	27	1012	1423.793	5356.630	5279	350	Madin	DeVargas' foram tow
	MOC25	6	5	4	27	0900	e	4	27	1300	1428.635	5355.039	5268	350	Madin	
rb11706.008		12	5	4	27	0915	S	4	27	1315	1428.846	5354.949	5297	200	Costas	down-up; 10m/min
rb11706.009		12	5	4	27	0935	e	4	27	1335	1428.901	5354.949	5274	200	Costas	
rb11706.010		13	5	4	27	1051	S	4	27	1451	1424.772	5356.494	5261	650	Wiebe	Staircase Tow
	MOC1	13	5	4	27	1507	e	4	27	1907	1425.119	5352.530	5157	551	Wiebe	tiny false start and began again
rb11706.012				4	27	1600	S	4	27	2000	1425.697	5358.938	5307		Wiebe	Station complete. San Juan bound.
	HullDive			4	29	0900	S	4	29	1300	1602.511	6242.118	1582		Madin	
	HullDive			4	29	0945	e	4	29	1345	1602.473	6242.557	917		Madin	
rb11906.003	U	8	6	4	29	1900	S	4	29	2300	1705.205	6422.036	nd	60	Hopcroft	60m line over the rail
rb11906.004	RingNet75	8	6	4	29	1930	e	4	29	2330	1705.654	6422438	nd	60	Hopcroft	
rb12006.001	Arrive			4	30	0900	e	4	30	1300	1827.535	6606.970	nd		Wiebe	at the dock - cruise complete

APPENDIX 2. Summary of Blue Water Dive Collections.

SCUBA Coll	ections or	ı CN	IAR	Z cri	iise, A	April 2	2006		
Values a	are numbe	rs cc	llect	ed or	each	dive			
	Dive No								
TAXON [No. species]	1	2	3	4	5	6	7	8	sums
Radiolaria							3		3
colonials	4	2	6	10	13				35
phaeodarians			1						1
Forams [1]									
Hastigerina pelagica						1			1
Medusae [4]									
Aegina (rosea) citrea								2	2
Geryonia proboscidalis		1		1					2
Liriope tetraphylla				1					1
Pelagia noctiluca				1					1
Siphonophores [13]									
Agalma elegans			1	1					2
Agalma sp			1						1
Athorybia rosacea					2			1	3
Forskalia edwardsii							1		1
Forskalia tholoides								1	1
Halistemma cupulifera			1						1
Hippopodius hippopus	6	1							7
Lilyopsis fluoracantha								1	1
Lilyopsis rosea		1							1
Nanomia bijuga		1							1
Rhizophysa filiformis			1						1
Rosacea cymbiformis	1			1					2
Sulculeolaria quadrivalvis	1							1	2
Ctenophores [6]									
Beroe mitrata							1		1
Cestum veneris				1	1	1		1	4
Eurhamphaea vexilligera		3				1			4
Ocyropsis maculata-		1							1
immaculata									
Ocyropsis maculata-		1						14	15
maculata									
Thalassocalyce inconstans							1	1	2
Molluscs [7]									
Cardiapoda richardi	1								1
Cavolinia sp.	1								1
Clio cuspidata (w /hydroids)		1							1
Clio sp			1						1

SCUBA Coll	ections or	CN	IAR	Z cr	uise, A	April 2	2006		
Values a	are numbe	rs co	ollecte	ed or	n each	dive			
	Dive No								
TAXON [No. species]	1	2	3	4	5	6	7	8	sums
Corolla ovata								1	1
Oxygyrus keraudreni							1		1
Pterotrachea hippocampus	1	1							2
Thaliaceans [10]									
Brooksia rostrata (agg chain)		1					1		2
Dolioletta gegenbauri	2			1					3
(colony)									
Iasis zonaria (agg chain)		3							3
Pegea bicaudata				3					3
Pegea confoederata (aggs)				4				75	79
Pyrosoma atlanticum			1						1
Salpa aspera (agg chain)		40	2						40
			chai						
			ns						
Salpa cylindrica (sol)					1				1
Salpa fusiformis (agg chain)		15							15
Salpa fusiformis (sol)				1					1
Salpa maxima (agg chain)				5					5
Salpa maxima (sol)								1	1
Crustacea [1]									
juvenile euphausiid			1						1
Other									
Alciopid polychaete		1							1
Rhizosolenia mats						2			2
Total species 42									260

APPENDIX 3. List of DNA extractions from foraminifera.

		CMarZ Pla	nkton Discovery	Cruise, April 2006	
		Skeleto	nized Microplan	kton -SM- Team	
Tot			•		
al	1:	541 DNA extractions			
Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-1	Globorotalia menardii	Ring net	200-0	
1	Z-2	Globorotalia menardii	Ring net	200-0	
1					
	Z-3	Globorotalia menardii	Ring net	200-0	
1	Z-4	Globorotalia menardii	Ring net	200-0	
1	Z-5	Globorotalia menardii	Ring net	200-0	
1	Z-6	Globorotalia menardii	Ring net	200-0	
1	Z-7	Globorotalia menardii	Ring net	200-0	
1	Z-8	Globorotalia menardii	Ring net	200-0	
1	Z-9	Globorotalia menardii	Ring net	200-0	
1	Z-10	Globorotalia menardii	Ring net	200-0	
1	Z-11	Globorotalia menardii	Ring net	200-0	
1	Z-12	Globorotalia menardii	Ring net	200-0	
1	Z-13	Globorotalia menardii	Ring net	200-0	
1	Z-14	Globorotalia menardii	Ring net	200-0	
1	Z-15	Globorotalia menardii	Ring net	200-0	
1	Z-16	Globorotalia menardii	Ring net	200-0	
1	Z-17	Globorotalia menardii	Ring net	200-0	
1	Z-18	Globorotalia menardii	Ring net	200-0	
1	Z-19	Globorotalia menardii	Ring net	200-0	
1	Z-20	Globorotalia menardii	Ring net	200-0	
1	Z-21	Globorotalia menardii	Ring net	200-0	
1	Z-22	Globorotalia menardii	Ring net	200-0	
1	Z-23	Globorotalia menardii	Ring net	200-0	
1	Z-24	Globorotalia menardii	Ring net	200-0	
1	Z-25	Globorotalia menardii	Ring net	200-0	
1	Z-26	Globorotalia menardii	Ring net	200-0	
1	Z-27	Globorotalia menardii	Ring net	200-0	
1	Z-28	Globorotalia menardii	Ring net	200-0	
1	Z-29	Globorotalia menardii	Ring net	200-0	
		Pulleniatina			
1	Z-30	obliquiloculata	Ring net	200-0	
		Globigerinoides	<i></i>		
1	Z-31	sacculifer	Ring net	200-0	
		Globigerinoides	<u> </u>		
1	Z-32	sacculifer	Ring net	200-0	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
,,	12	Globigerinoides	1 (et ej pe	Depen (iii)	TTO THE TIES
1	Z-33	sacculifer	Ring net	200-0	
		Globigerinoides	Tung not	200 0	
1	Z-34	sacculifer	Ring net	200-0	
		Globigerinoides	8		
1	Z-35	sacculifer	Ring net	200-0	
		Globigerinoides	8		
1	Z-36	sacculifer	Ring net	200-0	
1	Z-37	Globigerinoides ruber	Ring net	200-0	
1	Z-38	Globigerinoides ruber	Ring net	200-0	
1	Z-39	Globigerinoides ruber	Ring net	200-0	
1	Z-40	Globigerinoides ruber	Ring net	200-0	
1	Z-41	Globigerinoides ruber	Ring net	200-0	
1	Z-42	Globigerinoides ruber	Ring net	200-0	
1	Z-43	Globigerinoides ruber	Ring net	200-0	
1	Z-44	Globigerinoides ruber	Ring net	200-0	
1	Z-45	Globigerinoides ruber	Ring net	200-0	
1	Z-46	Globigerinoides ruber	Ring net	200-0	
		Neogloboquadrina			Right coiling, reddish
1	Z-47	dutertrei	Ring net	200-0	cytoplasm
		Neogloboquadrina			Right coiling, reddish
1	Z-48	dutertrei	Ring net	200-0	cytoplasm
		Neogloboquadrina			Right coiling, reddish
1	Z-49	dutertrei	Ring net	200-0	cytoplasm
		Neogloboquadrina			Right coiling, reddish
1	Z-50	dutertrei	Ring net	200-0	cytoplasm
		Neogloboquadrina			Left coiling, yellowish
1	Z-51	dutertrei	Ring net	200-0	cytoplasm
		Pulleniatina			
1	Z-52	obliquiloculata	Ring net	200-0	
1	Z-53	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-54	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-55	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-56	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-57	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-58	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-59	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-60	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-61	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-62	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-63	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-64	Globorotalia hirsuta	MOC-1_T1_N4	200-400	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-65	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-66	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-67	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-68	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-69	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-70	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-71	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-72	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-73	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-74	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-75	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-76	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-77	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-78	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-79	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-80	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-81	Globorotalia hirsuta	MOC-1 T1 N4	200-400	
1	Z-82	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-83	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-84	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-85	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-86	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-87	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
1	Z-88	Globorotalia hirsuta	MOC-1_T1_N4	200-400	
		Globorotalia			
1	Z-89	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-90	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-91	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-92	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-93	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-94	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-95	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-96	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-97	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
1	Z-98	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-99	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-100	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-101	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-102	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-103	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia			
1	Z-104	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
		Globorotalia	1.00		- 0
1	Z-105	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
_	7 406	Globorotalia		• • • • • • •	
1	Z-106	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
	7.107	Globorotalia	1400 1 T1 14	200 400	T 0 '11'
1	Z-107	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
1	7 100	Globorotalia	MOC 1 T1 N4	200 400	T C '1'
1	Z-108	truncatulinoides	MOC-1_T1_N4	200-400	Left coiling
1	Z-109	Globorotalia	MOC-1 T1 N4	200 400	I oft soiling
1	Z-109	truncatulinoides Globorotalia	MIOC-1_11_N4	200-400	Left coiling
1	Z-110	truncatulinoides	MOC-1 T1 N4	200-400	Left coiling
1	Z-110	Globorotalia	WIOC-1_11_N4	200-400	Left coming
1	Z-111	truncatulinoides	MOC-1 T1 N4	200-400	Left coiling
1	2-111	Globorotalia	WIOC-1_11_1V4	200-400	Left coming
1	Z-112	truncatulinoides	MOC-1 T1 N4	200-400	Left coiling
1	112	Globorotalia	1,100 1_11_1	200 100	2011 00111115
1	Z-113	truncatulinoides	MOC-1 T1 N4	200-400	Left coiling
1	Z-114		MOC-1 T1 N4	200-400	-
1	Z-115	V	MOC-1 T1 N4	200-400	
1	Z-116	Globorotalia inflata	MOC-1 T1 N5	100-200	
1	Z-117	Globorotalia inflata	MOC-1 T1 N5	100-200	
1	Z-118	Globorotalia inflata	MOC-1_T1_N5	100-200	
1	Z-119	Globorotalia inflata	MOC-1_T1_N5	100-200	
1	Z-120	Globorotalia inflata	MOC-1_T1_N5	100-200	
1	Z-121	Globorotalia inflata	MOC-1_T1_N5	100-200	
1	Z-122	Globorotalia inflata	MOC-1_T1_N5	100-200	
1	Z-123	Globorotalia inflata	MOC-1_T1_N5	100-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-124	Orbulina universa	MOC-1_T1_N5	100-200	
1	Z-125	Orbulina universa	MOC-1_T1_N5	100-200	
		Globigerinella			
1	Z-126	aequilateralis	MOC-1_T1_N5	100-200	
1	Z-127	Hastigerina pelagica	MOC-1_T1_N5	100-200	
1	Z-128	Globigerinita glutinata	MOC-1_T1_N5	100-200	
		Neogloboquadrina			
1	Z-129	dutertrei	MOC-1_T1_N5	100-200	
		Globorotalia			
1	Z-130	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-131	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-132	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-133	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-134	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-135	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-136	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
		Globorotalia			
1	Z-137	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
	- 100	Globorotalia		100 200	- 0
1	Z-138	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
1	7 120	Globorotalia	N600 1 T1 N5	100 200	T 0 '11'
1	Z-139	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
1	7 1 40	Globorotalia	MOC 1 TI NO	100.200	T C '1'
1	Z-140	truncatulinoides	MOC-1_T1_N5	100-200	Left coiling
1	7 111	Globorotalia	MOC 1 T1 N5	100 200	Laftasilina
1	Z-141	truncatulinoides Clabouatalia	MOC-1_T1_N5	100-200	Left coiling
1	7 140	Globorotalia truncatulinoides	MOC-1 T1 N5	100 200	Laft acilina
1	Z-142	Globorotalia	NIOC-1_11_N3	100-200	Left coiling
1	Z-143	truncatulinoides	MOC-1 T1 N5	100-200	Left coiling
1	L-143	Globorotalia	1V1OC-1_11_1N3	100-200	Left coiling
1	Z-144	truncatulinoides	MOC-1 T1 N5	100-200	Left coiling
1	∠-144	Globorotalia	1/100-1_11_1/3	100-200	Left coming
1	Z-145	truncatulinoides	MOC-1 T1 N5	100-200	Left coiling
1	<u></u> 2-143	Globorotalia	1/100-1_11_1/3	100-200	Left coming
1	Z-146	truncatulinoides	MOC-1 T1 N5	100-200	Left coiling
1	Z-140	u ancaiaimoiaes	1V10C-1_11_1N3	100-200	Left coming

S

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-174	Globorotalia hirsuta	MOC-1 T1 N5	100-200	beautiful!
1	Z-175	Globorotalia hirsuta	MOC-1 T1 N5	100-200	beautiful!
1	Z-176	Globorotalia hirsuta	MOC-1 T1 N5	100-200	beautiful!
1	Z-177	Globorotalia hirsuta	MOC-1 T1 N5	100-200	beautiful!
1	Z-178	Globorotalia hirsuta	MOC-1 T1 N5	100-200	beautiful!
1	Z-179	Globorotalia hirsuta	MOC-1 T1 N5	100-200	beautiful!
1	Z-180	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-181	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-182	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-183	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-184	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-185	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-186	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-187	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-188	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-189	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-190	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-191	Globorotalia hirsuta	MOC-1_T1_N5	100-200	beautiful!
1	Z-192	Hastigerina pelagica	MOC-1_T1_N6	50-100	
1	Z-193	Hastigerina pelagica	MOC-1_T1_N6	50-100	
1	Z-194	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-195	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-196	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-197	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-198	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-199	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-200	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-201	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-202	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-203	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-204	Globorotalia inflata	MOC-1_T1_N6	50-100	
1	Z-205	Globorotalia inflata	MOC-1_T1_N6	50-100	
		Globigerinella			
1	Z-206	aequilateralis	MOC-1_T1_N6	50-100	
		Globigerinella			
1	Z-207	aequilateralis	MOC-1_T1_N6	50-100	
		Globigerinella			
1	Z-208	aequilateralis	MOC-1_T1_N6	50-100	
		Globigerinella			
1	Z-209	aequilateralis	MOC-1_T1_N6	50-100	
		Globigerinella			
1	Z-210	aequilateralis	MOC-1_T1_N6	50-100	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	12	Globigerinella	1 (et type	zepin (iii)	TOMAL NO
1	Z-211	aequilateralis	MOC-1 T1 N6	50-100	
		Globigerinella			
1	Z-212	aequilateralis	MOC-1 T1 N6	50-100	
		Globigerinella	111001_11	20 100	
1	Z-213	aequilateralis	MOC-1 T1 N6	50-100	
		Globigerinella			
1	Z-214	C	MOC-1 T1 N6	50-100	
		Globigerinella			
1	Z-215	aequilateralis	MOC-1 T1 N6	50-100	
		Globigerinella			
1	Z-216	_	MOC-1_T1_N6	50-100	
		Globigerinella			
1	Z-217	aequilateralis	MOC-1_T1_N6	50-100	
1	Z-218	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-219	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-220	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-221	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-222	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-223	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-224	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-225	Globigerinoides ruber	MOC-1_T1_N6	50-100	
		Globigerinoides			
1	Z-226	0	MOC-1_T1_N6	50-100	
		Neogloboquadrina			
1	Z-227	dutertrei	MOC-1_T1_N6	50-100	
		Neogloboquadrina			
1	Z-228	dutertrei	MOC-1_T1_N6	50-100	
		Neogloboquadrina			
1	Z-229		MOC-1_T1_N6	50-100	
		Neogloboquadrina	3.600.4 = 1.5==	-0	
1	Z-230		MOC-1_T1_N6	50-100	
	- CO.	Pulleniatina	3.600.1 74.334	5 0.100	
1	Z-231	obliquiloculata	MOC-1_T1_N6	50-100	
	7 000	Pulleniatina	MOG 1 TI NG	50.100	
	Z-232	obliquiloculata	MOC-1_T1_N6	50-100	
1	Z-233		MOC-1_T1_N6	50-100	
1	Z-234		MOC-1_T1_N6	50-100	
1	Z-235		MOC-1_T1_N6	50-100	
1	Z-236		MOC-1_T1_N6	50-100	
1	Z-237	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-238	Globigerinoides ruber	MOC-1_T1_N6	50-100	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-239	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-240	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-241	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-242	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-243	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-244	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-245	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-246	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-247	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-248	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-249	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-250	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-251	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-252	Globigerinoides ruber	MOC-1 T1 N6	50-100	
1	Z-253	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-254	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-255	Globigerinoides ruber	MOC-1_T1_N6	50-100	
1	Z-256	Globigerinoides ruber	MOC-1_T1_N6	50-100	
		Globorotalia			
1	Z-257	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-258	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-259	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-260	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-261	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-262	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-263	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-264	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-265	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia			
1	Z-266	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia	3.50 6	100 555	
1	Z-267	truncatulinoides	MOC-1_T1_N3	400-600	
		Globorotalia	3.600.4 = 1.5=	100	
1	Z-268	truncatulinoides	MOC-1_T1_N3	400-600	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia	V 1		
1	Z-269	truncatulinoides	MOC-1 T1 N3	400-600	
		Globorotalia			
1	Z-270	truncatulinoides	MOC-1 T1 N3	400-600	
		Globorotalia			
1	Z-271	truncatulinoides	MOC-1 T1 N3	400-600	
		Globorotalia			
1	Z-272	truncatulinoides	MOC-1 T1 N3	400-600	
		Globorotalia			
1	Z-273	truncatulinoides	MOC-1 T1 N3	400-600	
		Globorotalia			
1	Z-274	truncatulinoides	MOC-1 T1 N3	400-600	
1	Z-275	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-276	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-277	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-278	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-279	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-280	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-281	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-282	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-283	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-284	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-285	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-286	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-287	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-288	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-289	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-290	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-291	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-292	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-293	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-294	Globorotalia hirsuta	MOC-1 T1 N3	400-600	
1	Z-295	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-296	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-297	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-298	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-299	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-300	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-301	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-302	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-303	Globorotalia hirsuta	MOC-1_T1_N3	400-600	
1	Z-304	Globorotalia hirsuta	MOC-1_T1_N3	400-600	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globigerinella			
1	Z-305	aequilateralis	MOC-1 T1 N7	25-50	
		Globigerinella			
1	Z-306	aequilateralis	MOC-1 T1 N7	25-50	
		Globigerinella			
1	Z-307	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-308	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-309	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z - 310	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-311	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-312	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-313	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-314	1	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-315	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-316		MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-317	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-318	aequilateralis	MOC-1_T1_N7	25-50	
		Globigerinella			
1	Z-319	1	MOC-1_T1_N7	25-50	
		Globigerinella			
	Z-320	•	MOC-1_T1_N7	25-50	
1	Z-321	Globorotalia inflata	MOC-1_T1_N7	25-50	
1	Z-322		MOC-1_T1_N7	25-50	
1	Z-323	Globorotalia inflata	MOC-1_T1_N7	25-50	
1	Z-324	- v	MOC-1_T1_N7	25-50	
1	Z-325		MOC-1_T1_N7	25-50	
1	Z-326	, , , , , , , , , , , , , , , , , , ,	MOC-1_T1_N7	25-50	
1	Z-327	Globorotalia inflata	MOC-1_T1_N7	25-50	
		Pulleniatina			
	Z-328		MOC-1_T1_N7	25-50	reddish cytoplasm
1	Z-329	Pulleniatina	MOC-1_T1_N7	25-50	reddish cytoplasm

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		obliquiloculata	K .		
		Pulleniatina			
1	Z-330	obliquiloculata	MOC-1 T1 N7	25-50	reddish cytoplasm
		Neogloboquadrina			
1	Z-331	dutertrei	MOC-1 T1 N7	25-50	
		Neogloboquadrina			
1	Z-332	dutertrei	MOC-1 T1 N7	25-50	
		Neogloboquadrina			
1	Z-333	dutertrei	MOC-1 T1 N7	25-50	
		Globorotalia			
1	Z-334	truncatulinoides	MOC-1 T1 N7	25-50	
		Globorotalia			
1	Z-335	truncatulinoides	MOC-1 T1 N7	25-50	
		Globorotalia			
1	Z-336	truncatulinoides	MOC-1 T1 N7	25-50	
1	Z-337	Globorotalia menardii	MOC-1 T1 N7	25-50	
1	Z-338	Globorotalia menardii	MOC-1 T1 N7	25-50	
1	Z-339	Globorotalia hirsuta	MOC-1 T1 N7	25-50	
	Z-340		MOC-1 T1 N7	25-50	
1	Z-341	Globigerinita glutinata	MOC-1 T1 N7	25-50	
		Globigerinoides			
1	Z-342	sacculifer	MOC-1 T1 N7	25-50	
1	Z-343	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-344		MOC-1 T1 N8	0-25	
1	Z-345	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-346	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-347	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-348	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-349		MOC-1 T1 N8	0-25	
1	Z-350	V	MOC-1 T1 N8	0-25	
1	Z-351	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-352		MOC-1 T1 N8	0-25	
1	Z-353	· ·	MOC-1 T1 N8	0-25	
1	Z-354		MOC-1 T1 N8	0-25	
1	Z-355	3	MOC-1 T1 N8	0-25	
1	Z-356	v	MOC-1 T1 N8	0-25	
1	Z-357	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-358		MOC-1 T1 N8	0-25	
1	Z-359	V	MOC-1 T1 N8	0-25	
1	Z-360		MOC-1 T1 N8	0-25	
1	Z-361	Globorotalia inflata	MOC-1 T1 N8	0-25	
1	Z-362	Pulleniatina	MOC-1 T1 N8	0-25	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		obliquiloculata			
		Neogloboquadrina			
1	Z-363	dutertrei	MOC-1 T1 N8	0-25	
		Neogloboquadrina			
1	Z-364		MOC-1 T1 N8	0-25	
		Neogloboquadrina			
1	Z-365	dutertrei	MOC-1_T1_N8	0-25	
		Neogloboquadrina			
1	Z-366	dutertrei	MOC-1_T1_N8	0-25	
		Neogloboquadrina			
1	Z-367	dutertrei	MOC-1_T1_N8	0-25	
		Neogloboquadrina			
1	Z-368	dutertrei	MOC-1_T1_N8	0-25	
1	Z-369	Globigerinita glutinata	MOC-1_T1_N8	0-25	
1	Z-370	Globigerinita glutinata	MOC-1_T1_N8	0-25	
1	Z-371	Globigerinita glutinata	MOC-1_T1_N8	0-25	
1	Z-372	Globigerinita glutinata	MOC-1_T1_N8	0-25	
1	Z-373	Globigerinita glutinata	MOC-1_T1_N8	0-25	
1	Z-374	Globigerinita glutinata	MOC-1_T1_N8	0-25	
1	Z-375	Globorotalia menardii	MOC-1_T1_N8	0-25	
1	Z-376	Globorotalia menardii	MOC-1_T1_N8	0-25	
		Globorotalia			
1	Z-377	truncatulinoides	MOC-1_T1_N8	0-25	
		Globorotalia			
1	Z-378	truncatulinoides	MOC-1_T1_N8	0-25	
		Globorotalia			
1	Z-379	truncatulinoides	MOC-1_T1_N8	0-25	
1	Z-380	Globorotalia hirsuta	MOC-1_T1_N8	0-25	reddish cytoplasm
1	Z-381	Globorotalia hirsuta	MOC-1_T1_N8	0-25	reddish cytoplasm
1	Z-382	Globorotalia hirsuta	MOC-1_T1_N8	0-25	
1	Z-383		MOC-1_T1_N8	0-25	
1	Z-384		MOC-1_T1_N8	0-25	
1	Z-385	Globorotalia hirsuta	MOC-1_T1_N8	0-25	
1	Z-386		MOC-1_T1_N8	0-25	
1	Z-387	Globorotalia hirsuta	MOC-1_T1_N8	0-25	
1	Z-388	Globorotalia tumida	MOC-1/4_T2_N5	75-100	
1	Z-389	Globorotalia tumida	MOC-1/4_T2_N5	75-100	
1	Z-390	Globorotalia tumida	MOC-1/4_T2_N6	50-75	
1	Z-391	Globigerinoides ruber	MOC-1_T1_N8	0-25	
1	Z-392	Globigerinoides ruber	MOC-1_T1_N8	0-25	
1	Z-393	Globigerinoides ruber	MOC-1_T1_N8	0-25	
1	Z-394	Globigerinoides ruber	MOC-1_T1_N8	0-25	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-395	Globigerinoides ruber	MOC-1 T1 N8	0-25	
1	Z-396	Globigerinoides ruber	MOC-1_T1_N8	0-25	
1	Z-397	Globigerinoides ruber	MOC-1_T1_N8	0-25	
					kept the extra in EtOH, tube
1	Z-398	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
					kept the extra in EtOH, tube
1	Z-399	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
					kept the extra in EtOH, tube
1	Z-400	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
					kept the extra in EtOH, tube
1	Z-401	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
					kept the extra in EtOH, tube
1	Z-402	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
	- 40 0		3.50.00.4. 550.330	600.000	kept the extra in EtOH, tube
1	Z-403	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
	7 40 4		1.60G 1 TO 110	(00 000	kept the extra in EtOH, tube
1	Z-404	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
1	7.405		MOC 1 TO NO	(00,000	kept the extra in EtOH, tube
1	Z-405	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
1	7 406	Cl. 1 1: . 1:	MOC 1 TO NO	(00,000	kept the extra in EtOH, tube
1	Z-406	Globorotalia hirsuta	MOC-1_T2_N2	600-800	3ml
1	Z-407	Globorotalia hirsuta	MOC-1 T2 N2	600-800	kept the extra in EtOH, tube 3ml
1	Z-40/	Giovoroiaita nirsuta	WIOC-1_12_N2	000-800	kept the extra in EtOH, tube
1	Z-408	Globorotalia hirsuta	MOC-1 T2 N2	600-800	3ml
1	Z-408	Globigerinella	WIOC-1_12_IN2	000-800	31111
1	Z-409	aequilateralis	MOC-1 T2 N3	400-600	
1	Z-410	Orbulina universa	MOC-1 T2 N8	0-25	
1	Z-411	Orbulina universa	MOC-1 T2 N8	0-25	
	Z-412	Orbulina universa	MOC-1 T2 N8	0-25	
_					white and small shell, slide
1	Z-413	Globigerinoides ruber	MOC-1 T2 N8	0-25	C1
		<u> </u>			white and small shell, slide
1	Z-414	Globigerinoides ruber	MOC-1 T2 N8	0-25	C1
					white and small shell, slide
1	Z-415	Globigerinoides ruber	MOC-1_T2_N8	0-25	C1
		<u>_</u>			white and small shell, slide
1	Z-416	Globigerinoides ruber	MOC-1_T2_N8	0-25	C1
					white and small shell, slide
1	Z-417	Globigerinoides ruber	MOC-1_T2_N8	0-25	C1
					white and small shell, slide
1	Z-418	Globigerinoides ruber	MOC-1_T2_N8	0-25	C1

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		•			white and small shell, slide
1	Z-419	Globigerinoides ruber	MOC-1 T2 N8	0-25	C1
		<u> </u>			white and small shell, slide
1	Z-420	Globigerinoides ruber	MOC-1 T2 N8	0-25	C1
					white and small shell, slide
1	Z-421	Globigerinoides ruber	MOC-1 T2 N8	0-25	C1
		Globigerinella			
1	Z-422	aequilateralis	MOC-1_T2_N8	0-25	whitish and big shell
		Globigerinella			-
1	Z-423	aequilateralis	MOC-1_T2_N8	0-25	whitish and big shell
		Globigerinella			
1	Z-424	aequilateralis	MOC-1_T2_N8	0-25	whitish and big shell
		Globigerinella			
1	Z-425	aequilateralis	MOC-1_T2_N8	0-25	small shell, reddish cytoplasm
		Globigerinella			
1	Z-426	aequilateralis	MOC-1_T2_N8	0-25	small shell, reddish cytoplasm
		Globigerinella			
1	Z-427	aequilateralis	MOC-1_T2_N8	0-25	small shell, reddish cytoplasm
		Globigerinella			
1	Z-428	aequilateralis	MOC-1_T2_N8	0-25	small shell, reddish cytoplasm
1	Z-429	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-430	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-431	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-432	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-433	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-434	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-435	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-436	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-437	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-438	Č	MOC-1/4_T2_N7	25-50	white shell
1	Z-439		MOC-1/4_T2_N7	25-50	white shell
1	Z-440		MOC-1/4_T2_N7	25-50	white shell
1	Z-441	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	white shell
1	Z-442	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-443	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-444	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-445	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-446	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-447	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-448	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-449	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell
1	Z-450	Globigerinoides ruber	MOC-1/4_T2_N7	25-50	pink shell

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-451	Globigerinoides ruber	MOC-1/4 T2 N7	25-50	pink shell
1	Z-452	Globigerinoides ruber	MOC-1/4 T2 N7	25-50	pink shell
		Globorotalia			1
1	Z-453	crassaformis	MOC-1/4 T2 N2	200-400	Silvia
		J			small shell, orange color
1	Z-454	Globorotalia inflata	MOC-1/4 T2 N8	0-25	cytoplasm
1	Z-455	Globorotalia inflata	MOC-1/4 T2 N8	0-25	reddish cytoplasm
1	Z-456	Globorotalia inflata	MOC-1/4 T2 N8	0-25	reddish cytoplasm
1	Z-457	Globorotalia inflata	MOC-1/4 T2 N8	0-25	reddish cytoplasm
1	Z-458	Globorotalia inflata	MOC-1/4 T2 N8	0-25	reddish cytoplasm
1	Z-459	Globorotalia inflata	MOC-1/4 T2 N6	50-75	•
1	Z-460	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-461	Globorotalia inflata	MOC-1/4_T2_N6	50-75	
1	Z-462	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-463	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-464	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-465	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-466	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-467	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-468	Globorotalia inflata	MOC-1/4 T2 N6	50-75	
1	Z-469	Globorotalia inflata	MOC-1/4 T2 N2	200-400	
1	Z-470	Globorotalia inflata	MOC-1/4 T2 N2	200-400	
1	Z-471	Globorotalia inflata	MOC-1/4_T2_N2	200-400	
1	Z-472	Globorotalia inflata	MOC-1/4_T2_N2	200-400	
1	Z-473	Globorotalia inflata	MOC-1/4_T2_N2	200-400	
1	Z-474	Globorotalia inflata	MOC-1/4_T2_N2	100-150	
1	Z-475	Globorotalia inflata	MOC-1/4_T2_N2	100-150	
1	Z-476	Globorotalia inflata	MOC-1/4_T2_N2	100-150	
1	Z-477	Globorotalia inflata	MOC-1/4_T2_N2	100-150	
1	Z-478	Globorotalia inflata	MOC-1/4_T2_N2	100-150	
		Globorotalia			
1	Z-479	truncatulinoides	MOC-1/4_T2_N2	100-150	
1	Z-480	Globorotalia tumida	MOC-1/4_T2_N2	100-150	
1	Z-481	Globorotalia inflata	MOC-1/4_T2_N5	75-100	
1	Z-482	Globorotalia inflata	MOC-1/4_T2_N5	75-100	
1	Z-483	Globorotalia inflata	MOC-1/4_T2_N5	75-100	
1	Z-484	Globorotalia inflata	MOC-1/4_T2_N5	75-100	
1	Z-485	Globorotalia inflata	MOC-1/4_T2_N5	75-100	
		Globorotalia			
1	Z-486	truncatulinoides	MOC-1/4_T2_N5	75-100	
1	Z-487	Globigerina humilis	MOC-1/4_T2_N8	0-25	
1	Z-488	Globigerina humilis	MOC-1/4_T2_N8	0-25	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-489	Globigerina humilis	MOC-1/4 T2 N3	150-200	
1	Z-490	Globorotalia scitula	MOC-1/4 T2 N2	200-400	
1	Z-491	Globorotalia tumida	MOC-1/4 T2 N2	200-400	
1	Z-492	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-493	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-494	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-495	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-496	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-497	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-498	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-499	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-500	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-501	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-502	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-503	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-504	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-505	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-506	Globorotalia hirsuta	MOC-1/4 T2 N2	200-400	
1	Z-507	Globorotalia hirsuta	MOC-1/4 T2 N5	75-100	
1	Z-508	Globorotalia hirsuta	MOC-1/4 T2 N5	75-100	
1	Z-509	Globorotalia hirsuta	MOC-1/4 T2 N5	75-100	
1	Z-510	Globorotalia hirsuta	MOC-1/4 T2 N5	75-100	
		Pulleniatina			
1	Z-511	obliquiloculata	MOC-1/4 T2 N4	100-150	
1	Z-512	Globigerinita glutinata	MOC-1/4 T2 N4	100-150	
1	Z-513	Globigerinita glutinata	MOC-1/4 T2 N4	100-150	
1	Z-514	Globigerinita glutinata	MOC-1/4 T2 N4	100-150	
1	Z-515	Globigerinita glutinata	MOC-1/4 T2 N4	100-150	
		Globorotalia			
1	Z-516	truncatulinoides	MOC-1/4 T2 N4	100-150	
		Globorotalia			
1	Z-517	truncatulinoides	MOC-1/4 T2 N4	100-150	
1	Z-518	Globorotalia hirsuta	MOC-1/4 T2 N4	100-150	
1	Z-519	Globorotalia hirsuta	MOC-1/4 T2 N4	100-150	
1	Z-520	Globorotalia hirsuta	MOC-1/4 T2 N4	100-150	
1	Z-521	Globorotalia hirsuta	MOC-1/4 T2 N4	100-150	
1	Z-522	Globorotalia hirsuta	MOC-1/4 T2 N4	100-150	
		Globorotalia			
1	Z-523	truncatulinoides	MOC-1/4 T2 N3	150-200	Right coiling
		Globorotalia			
1	Z-524	truncatulinoides	MOC-1/4 T2 N3	150-200	left coiling
1	Z-525	Globorotalia	MOC-1/4 T2 N3	150-200	left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		truncatulinoides			
		Globorotalia			
1	Z-526	truncatulinoides	MOC-1/4 T2 N3	150-200	left coiling
		Globorotalia			
1	Z-527	truncatulinoides	MOC-1/4 T2 N3	150-200	left coiling
		Globorotalia			
1	Z-528	truncatulinoides	MOC-1/4 T2 N3	150-200	left coiling
		Globorotalia			
1	Z-529	truncatulinoides	MOC-1/4 T2 N3	150-200	left coiling
		Globorotalia			
1	Z-530	truncatulinoides	MOC-1/4_T2_N3	150-200	left coiling
		Globorotalia			
1	Z-531	truncatulinoides	MOC-1/4_T2_N2	200-400	Right coiling
		Globorotalia			
1	Z-532	truncatulinoides	MOC-1/4_T2_N2	200-400	Right coiling
		Globorotalia			
1	Z-533	truncatulinoides	MOC-1/4_T2_N2	200-400	Right coiling
		Globorotalia			
1	Z-534	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-535	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-436	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-537	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-538	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-539	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia		• • • • • • •	
1	Z-540	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia		• • • • • • •	
1	Z-541	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
	5.5.6	Globorotalia	1000111 ===============================	200 100	1.0 111
1	Z-542	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia		• • • • • • •	
1	Z-543	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
	5.5.	Globorotalia	1000111 ===============================	200 100	1.0 111
1	Z-544	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
	7.5.5	Globorotalia	1.60G 1/4 TO 375	200 400	1.0 11
_	Z-545	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
1	Z-546	Globorotalia	MOC-1/4_T2_N2	200-400	left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		truncatulinoides			
		Globorotalia			
1	Z-547	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-548	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-549	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-550	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-551	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-552	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-553	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-554	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-555	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-556		MOC-1/4_T2_N2	200-400	left coiling
		Globorotalia			
1	Z-557	truncatulinoides	MOC-1/4_T2_N2	200-400	left coiling
1	Z-558		MOC-1_T2_N4	200-400	
1	Z-559	Globorotalia inflata	MOC-1_T2_N4	200-400	
1	Z-560	Globorotalia inflata	MOC-1_T2_N4	200-400	
1	Z-561	Globorotalia inflata	MOC-1_T2_N4	200-400	
1	Z-562	Globorotalia inflata	MOC-1_T2_N4	200-400	
1	Z-563	Globorotalia tumida	MOC-1_T2_N5	100-200	
1	Z-564		MOC-1_T2_N5	100-200	
1	Z-565		MOC-1_T2_N5	100-200	
1	Z-566		MOC-1_T2_N5	100-200	
1	Z-567		MOC-1_T2_N5	100-200	
1	Z-568	Globorotalia tumida	MOC-1_T2_N5	100-200	
1	Z-569	- V	MOC-1_T2_N5	100-200	
1	Z-570	<i>J</i>	MOC-1_T2_N5	100-200	
		Globorotalia			
1	Z-571	truncatulinoides	MOC-1_T2_N5	100-200	right coiling
		Globorotalia			
1	Z-572	truncatulinoides	MOC-1_T2_N5	100-200	right coiling
		Globorotalia			
1	Z-573	truncatulinoides	MOC-1_T2_N5	100-200	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
1	Z-574	truncatulinoides	MOC-1_T2_N5	100-200	right coiling
		Globorotalia			
1	Z-575	truncatulinoides	MOC-1_T2_N5	100-200	left coiling
		Globorotalia			-
1	Z-576	truncatulinoides	MOC-1_T2_N5	100-200	left coiling
		Globorotalia			
1	Z-577	truncatulinoides	MOC-1_T2_N5	100-200	left coiling
		Globorotalia			
1	Z-578	truncatulinoides	MOC-1_T2_N5	100-200	left coiling
		Globorotalia			
1	Z-579	truncatulinoides	MOC-1_T2_N5	100-200	left coiling
1	Z-580	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-581	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-582	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-583	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-584	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-585	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-586	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-587	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-588	Globigerinita glutinata	MOC-1/4_T2_N6	50-75	
1	Z-589	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-590	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-591	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-592	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-593	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-594	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-595	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-596	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-597	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-598	Globigerinita glutinata	MOC-1/4_T2_N8	0-25	
1	Z-599	Globigerinita glutinata	MOC-1/4_T2_N5	75-100	
1	Z-600	Globigerinita glutinata	MOC-1/4_T2_N5	75-100	
1	Z-601	Globigerinita glutinata	MOC-1/4_T2_N5	75-100	
1	Z-602	Globigerinita glutinata	MOC-1/4_T2_N5	75-100	
1	Z-603	Globigerinita glutinata	MOC-1/4_T2_N5	75-100	
1	Z-604	Globigerinita glutinata	MOC-1/4_T2_N3	150-200	
1	Z-605	Globigerinita glutinata	MOC-1/4_T2_N3	150-200	
1	Z-606	Globigerinita glutinata	MOC-1/4_T2_N3	150-200	
1	Z-607	Globorotalia scitula	MOC-1/4_T2_N3	150-200	
1	Z-608	Globorotalia scitula	MOC-1/4_T2_N3	150-200	
1	Z-609	Neogloboquadrina	MOC-1/4_T2_N8	0-25	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		dutertrei			
		Neogloboquadrina			
1	Z-610	dutertrei	MOC-1/4 T2 N8	0-25	
		Pulleniatina			
1	Z-611	obliquiloculata	MOC-1/4 T2 N8	0-25	
		Globigerinoides	_		
1	Z-612	sacculifer	MOC-1/4 T2 N8	0-25	
1	Z-613	Globigerina humilis	MOC-1/4_T2_N7	25-50	
1	Z-614		MOC-1/4 T2 N7	25-50	
1	Z-615	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-616		MOC-1/4 T2 N7	25-50	
1	Z-617	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-618		MOC-1/4_T2_N7	25-50	
1	Z-619	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-620	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-621	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-622	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-623	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-624	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
1	Z-625		MOC-1/4 T2 N7	25-50	
1	Z-626	Globigerinita glutinata	MOC-1/4 T2 N7	25-50	
		Neogloboquadrina			
1	Z-627	dutertrei	MOC-1/4_T2_N7	25-50	
		Pulleniatina			
1	Z-628	obliquiloculata	MOC-1/4_T2_N7	25-50	
1	Z-629	Globorotalia inflata	MOC-1/4_T2_N7	25-50	
1	Z-630	Globorotalia inflata	MOC-1/4_T2_N7	25-50	
1	Z-631	Globorotalia inflata	MOC-1/4_T2_N7	25-50	
		Globigerinoides			
1	Z-632	sacculifer	MOC-1/4_T2_N7	25-50	
		Globigerinoides			
1	Z-633	sacculifer	MOC-1/4_T2_N7	25-50	
		Globigerinoides			
1	Z-634	sacculifer	MOC-1/4_T2_N7	25-50	
		Globigerinoides			
1	Z-635	sacculifer	MOC-1/4_T2_N7	25-50	
		Globigerinoides			
1	Z-636	sacculifer	MOC-1/4_T2_N7	25-50	
		Globigerinoides			
1	Z-637	sacculifer	MOC-1/4_T2_N7	25-50	
1	Z-638	Globigerinoides ruber	MOC-1/4_T2_N8	0-25	pink shell
1	Z-639	Globigerinoides ruber	MOC-1/4_T2_N8	0-25	pink shell

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-640	Globigerinoides ruber	MOC-1/4 T2 N8	0-25	white shell
1	Z-641	Globigerinoides ruber	MOC-1/4 T2 N8	0-25	white shell
1	Z-642	Globigerinoides ruber	MOC-1/4 T2 N8	0-25	white shell
1	Z-643	Globigerinoides ruber	MOC-1/4 T2 N8	0-25	white shell
1	Z-644		MOC-1/4 T2 N6	50-75	white shell
1	Z-645		MOC-1/4 T2 N6	50-75	white shell
1	Z-646	<u> </u>	MOC-1/4 T2 N6	50-75	white shell
		Globigerinella			
1	Z-647	aequilateralis	MOC-1/4 T2 N8	0-25	
		Globigerinella			
1	Z-648	aequilateralis	MOC-1/4 T2 N8	0-25	
		Globigerinella			
1	Z-649	aequilateralis	MOC-1/4 T2 N8	0-25	
		Globigerinella			
1	Z-650		MOC-1/4 T2 N8	0-25	
		Globigerinella			
1	Z-651	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-652	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-653	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-654	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-655	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-656	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-657		MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-658	aequilateralis	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-659		MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-660	1	MOC-1/4_T2_N6	50-75	
		Globigerinella			
1	Z-661	aequilateralis	MOC-1/4_T2_N7	25-50	
		Globigerinella			
1	Z-662	aequilateralis	MOC-1/4_T2_N7	25-50	
		Globigerinella			
1	Z-663	1	MOC-1/4_T2_N7	25-50	
1	Z-664	Globigerinella	MOC-1/4_T2_N7	25-50	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		aequilateralis		_ 0,000 (000)	
		Globigerinella			
1	Z-665	aequilateralis	MOC-1/4 T2 N7	25-50	
		Globigerinella			
1	Z-666		MOC-1/4 T2 N7	25-50	
		Globigerinella			
1	Z-667	aequilateralis	MOC-1/4_T2_N7	25-50	
		Globigerinella			
1	Z-668	aequilateralis	MOC-1/4_T2_N7	25-50	
1	Z-669	Globorotalia hirsuta	MOC-1/4_T2_N1	400-500	Left coiling
1	Z-670	Globorotalia hirsuta	MOC-1/4_T2_N1	400-500	Right coiling
1	Z-671	Globorotalia hirsuta	MOC-1/4_T2_N1	400-500	Right coiling
1	Z-672	Globorotalia hirsuta	MOC-1/4_T2_N1	400-500	Right coiling
1	Z-673	Globorotalia tumida	MOC-1_T2_N4	200-400	
1	Z-674	Globorotalia tumida	MOC-1_T2_N4	200-400	
1	Z-675	Globorotalia tumida	MOC-1_T2_N4	200-400	
1	Z-676	Globorotalia tumida	MOC-1_T2_N4	200-400	
		Globorotalia			
1	Z-677	truncatulinoides	MOC-1_T2_N4	200-400	Right coiling
		Globorotalia			
1	Z-678	truncatulinoides	MOC-1_T2_N4	200-400	Right coiling
		Globorotalia			
1	Z-679	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-680	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-681	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-682	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia		• • • • • • • • • • • • • • • • • • • •	- 0
1	Z-683	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia	1.000.000.	• • • • • • • • • • • • • • • • • • • •	- 0
1	Z-684	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia	1.000.000.	• • • • • • • • • • • • • • • • • • • •	- 0
1	Z-685	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
	7 (0)	Globorotalia	1.000 1 72 351	200 100	
1	Z-686	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
	7 (05	Globorotalia	1.000 1 72 351	200 100	
1	Z-687	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
	7. (00	Globorotalia	1.600 1 72 371	200 400	T 0 '11'
1	Z-688	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
1	Z-689	Globorotalia	MOC-1_T2_N4	200-400	Left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		truncatulinoides			
		Globorotalia			
1	Z-690	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			-
1	Z-691	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-692	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-693	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-694		MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-695	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-696		MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-697	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-698		MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-699		MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-700		MOC-1_T2_N4	200-400	Left coiling
		Globorotalia			
1	Z-701	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
		Globorotalia	3.60.6.4. == 3.44	• • • • • • •	- 0
1	Z-702	truncatulinoides	MOC-1_T2_N4	200-400	Left coiling
	7.500	Globorotalia) (OG 1 TO) (200 400	
1	Z-703		MOC-1_T2_N4	200-400	Left coiling
1	Z-704		MOC-1_T2_N4	200-400	splendid
1	Z-705		MOC-1_T2_N4	200-400	splendid
1	Z-706		MOC-1_T2_N4	200-400	splendid
1	Z-707		MOC-1_T2_N4	200-400	splendid
1	Z-708		MOC-1_T2_N4	200-400	splendid
1	Z-709		MOC-1_T2_N4	200-400	splendid
1	Z-710		MOC-1_T2_N4	200-400	splendid
1	Z-711	Globorotalia hirsuta	MOC-1_T2_N4	200-400	splendid
1	Z-712		MOC-1_T2_N4	200-400	splendid
1	Z-713		MOC-1_T2_N4	200-400	splendid
1	Z-714		MOC-1_T2_N4	200-400	splendid
1	Z-715		MOC-1_T2_N4	200-400	splendid
1	Z-716	Globorotalia hirsuta	MOC-1_T2_N4	200-400	splendid

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
1	Z-717	Globorotalia hirsuta	MOC-1 T2 N4	200-400	splendid
1	Z-718	Globorotalia hirsuta	MOC-1 T2 N4	200-400	splendid
1	Z-719	Globorotalia hirsuta	MOC-1 T2 N4	200-400	splendid
1	Z-720	Globorotalia hirsuta	MOC-1 T2 N4	200-400	splendid
		Globorotalia			•
1	Z-721	truncatulinoides	MOC-1 T2 N3	400-600	left coiling
		Globorotalia			
1	Z-722	truncatulinoides	MOC-1 T2 N3	400-600	left coiling
		Globorotalia			
1	Z-723	truncatulinoides	MOC-1 T2 N3	400-600	left coiling
		Globorotalia			<u> </u>
1	Z-724	truncatulinoides	MOC-1 T2 N3	400-600	left coiling
		Globorotalia			-
1	Z-725	truncatulinoides	MOC-1_T2_N3	400-600	left coiling
		Globorotalia			-
1	Z-726	truncatulinoides	MOC-1_T2_N3	400-600	left coiling
		Globorotalia			
1	Z-727	truncatulinoides	MOC-1_T2_N3	400-600	left coiling
		Globorotalia			
1	Z-728	truncatulinoides	MOC-1_T2_N3	400-600	left coiling
		Globorotalia			
1	Z-729	truncatulinoides	MOC-1_T2_N3	400-600	left coiling
		Globorotalia			
1	Z-730	truncatulinoides	MOC-1_T2_N3	400-600	Right coiling
1	Z-731	Globorotalia hirsuta	MOC-1_T2_N3	400-600	
1	Z-732	Globorotalia hirsuta	MOC-1_T2_N3	400-600	
1	Z-733	Globorotalia hirsuta	MOC-1_T2_N3	400-600	
1	Z-734	Globorotalia hirsuta	MOC-1_T2_N3	400-600	
1	Z-735	Globorotalia hirsuta	MOC-1_T2_N3	400-600	
1		Globorotalia hirsuta	MOC-1 T2 N3	400-600	
2	Z-737	Hastigerina pelagica	MOC-1_T3,4_N2	600-800	
2	Z-738		MOC-1_T3,4_N2	600-800	
2	Z-739		MOC-1_T3,4_N2	600-800	
2	Z-740	Hastigerina pelagica	MOC-1_T3,4_N3	400-600	
2	Z-741	Globorotalia hirsuta	MOC-1_T3,4_N3	400-600	Left coiling
2	Z-742	Globorotalia hirsuta	MOC-1_T3,4_N3	400-600	Right coiling
2	Z-743	Globorotalia hirsuta	MOC-1_T3,4_N3	400-600	Right coiling
		Globorotalia			
2	Z-744	truncatulinoides	MOC-1_T3,4_N3	400-600	
2	Z-745	Globorotalia inflata	MOC-1_T3,4_N5	100-200	
2	Z-746	Globorotalia inflata	MOC-1_T3,4_N5	100-200	
2	Z-747	Globorotalia inflata	MOC-1_T3,4_N5	100-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
2	Z-748	Globorotalia hirsuta	MOC-1_T3,4_N5	100-200	
		Neogloboquadrina			
2	Z-749	dutertrei	MOC-1 T3,4 N6	50-100	
2	Z-750	Globorotalia inflata	MOC-1 T3,4 N6	50-100	
2	Z-751	Orbulina universa	MOC-1 T3,4 N6	50-100	
2	Z-752	Globorotalia inflata	MOC-1 T3,4 N7	25-50	
2	Z-753	Orbulina universa	MOC-1 T3,4 N7	25-50	
2	Z-754	Orbulina universa	MOC-1 T3,4 N7	25-50	
		Globigerinella			
2	Z-755	aequilateralis	MOC-1_T3,4_N8	0-25	
		Globigerinella			
2	Z-756		MOC-1 T3,4 N8	0-25	
		Neogloboquadrina			
2	Z-757	dutertrei	MOC-1_T3,4_N8	0-25	
2	Z-758	Orbulina universa	MOC-1 T3,4 N8	0-25	
		Globigerinella			
2	Z-759	_	MOC-1 T3,4 N8	0-25	
2	Z-760		MOC-1 T3,4 N8	0-25	
2	Z-761		MOC-1 T3,4 N8	0-25	
2	Z-762	Hastigerina pelagica	MOC-1 T3,4 N8	0-25	
		Globigerinella			
3	Z-763	aequilateralis	Ring Net	0-20	
		Globigerinoides			
3	Z-764	sacculifer	Ring Net	0-20	
3	Z-765	Globigerinita glutinata	Ring Net	0-20	
3	Z-766	Orbulina universa	Ring Net	0-20	
3	Z-767	Orbulina universa	Ring Net	0-20	
3	Z-768	Orbulina universa	Ring Net	0-20	
3	Z-769	Orbulina universa	Ring Net	0-20	
		Globigerinoides			
3	Z-770	sacculifer	Ring Net	0-50	
3	Z-771	Hastigerina pelagica	Ring Net	0-50	
3	Z-772	Hastigerina pelagica	Ring Net	0-50	
3	Z-773	Hastigerina pelagica	Ring Net	0-50	
3	Z-774	Hastigerina pelagica	Ring Net	0-50	
3	Z-775	Hastigerina digitata	MOC-10_T3_N4	1000-2000	
		Globorotalia			
3	Z-776	truncatulinoides	MOC-10_T3_N4	1000-2000	left coiling
		Globorotalia			-
3	Z-777	truncatulinoides	MOC-10_T3_N4	1000-2000	left coiling
		Globorotalia			
3	Z-778	truncatulinoides	MOC-10_T3_N4	1000-2000	left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
3	Z-779	truncatulinoides	MOC-10 T3 N4	1000-2000	right coiling
3	Z-780	Globorotalia hirstuta	MOC-10 T3 N4	1000-2000	5
3	Z-781	Globorotalia hirstuta	MOC-10 T3 N4	1000-2000	
3	Z-782	Hastigerina pelagica	Ring Net	0-200	
3	Z-783	Hastigerina pelagica	Ring Net	0-200	
		Globorotalia			
3	Z-784	truncatulinoides	Ring Net	0-200	left coiling
		Globorotalia			
3	Z-785	truncatulinoides	Ring Net	0-200	left coiling
		Globorotalia			<u> </u>
3	Z-786	truncatulinoides	Ring Net	0-200	left coiling
		Globigerinella			<u> </u>
3	Z-787	aequilateralis	Ring Net	0-200	
3	Z-788	Globigerinita glutinata	Ring Net	0-200	
3	Z-789	Globigerinoides ruber	Ring Net	0-200	
3	Z-790	Globigerinita glutinata	Ring Net	surface	
3	Z-791	Orbulina universa	Ring Net	surface	
3	Z-792	Orbulina universa	Ring Net	surface	
		Neogloboquadrina	8		
3	Z-793	dutertrei	MOC-10 T3 N2	3000-4000	
		Globorotalia			
3	Z-794	truncatulinoides	MOC-10 T3 N2	3000-4000	right coiling
3	Z-795	Globigerinita glutinata	MOC-10 T3 N2	3000-4000	5 5
		Globorotalia			
3	Z-796	truncatulinoides	MOC-1 T7 N8	0-25	right coiling
		Globorotalia			
3	Z-797	truncatulinoides	MOC-1 T7 N8	0-25	right coiling
3	Z-798	Orbulina universa	MOC-1 T7 N7	25-50	
3	Z-799	Orbulina universa	MOC-1 T7 N7	25-50	
3	Z-800	Orbulina universa	MOC-1 T7 N6	50-100	
3	Z-801	Orbulina universa	MOC-1 T7 N6	50-100	
3	Z-802	Orbulina universa	MOC-1 T7 N6	50-100	
3	Z-803	Orbulina universa	MOC-1 T7 N6	50-100	
		Globorotalia			
3	Z-804	truncatulinoides	MOC-1_T7_N4	200-400	left coiling
		Globorotalia			
3	Z-805	truncatulinoides	MOC-1_T7_N4	200-400	left coiling
		Globorotalia			
3	Z-806	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
		Globorotalia			
3	Z-807	truncatulinoides	MOC-1_T7_N4	200-400	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
3	Z-808	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
		Globorotalia			
3	Z-809	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
		Globorotalia			
3	Z-810	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
		Globorotalia			
3	Z-811	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
	- 014	Globorotalia		• • • • • • •	
3	Z-812	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
	7.010	Globorotalia	3.60 C 1 TT 314	200 400	
3	Z-813	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
	7.014	Globorotalia	3.60 C 1 TT 314	200 400	
3	Z-814	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
2	7.015	Globorotalia	MOC 1 TO NA	200 400	
3	Z-815	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
2	7.016	Globorotalia	MOC 1 TO NA	200 400	
3	Z-816	truncatulinoides	MOC-1_T7_N4	200-400	right coiling
2	7 017	Globigerinella	MOC 1 T7 N5	100 200	
3	Z-817	aequilateralis Globorotalia	MOC-1_T7_N5	100-200	
3	Z-818	Gioporoialia truncatulinoides	MOC 1 T7 N2	400 600	might poiling
3	Z-010	Globorotalia	MOC-1_T7_N3	400-600	right coiling
3	Z-819	truncatulinoides	MOC-1 T7 N3	400-600	right coiling
3	2-019	Globorotalia	1000-1_17_103	400-000	right coming
3	Z-820	truncatulinoides	MOC-1 T7 N3	400-600	right coiling
3	2 020	Globorotalia	14100 1_17_143	100 000	right coming
3	Z-821	truncatulinoides	MOC-1 T7 N3	400-600	right coiling
	2 021	Globorotalia	1,1001_17_110	100 000	ngm coming
3	Z-822	truncatulinoides	MOC-1 T7 N3	400-600	right coiling
	_ 0	Globorotalia	1,1001_1,_1,0	.00.000	118111 V 0111119
3	Z-823	truncatulinoides	MOC-1 T7 N3	400-600	right coiling
		Globorotalia			5
3	Z-824	truncatulinoides	MOC-1 T7 N5	100-200	left coiling
		Globorotalia			
3	Z-825	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			_
3	Z-826	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-827	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-828	truncatulinoides	MOC-1_T7_N5	100-200	left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
3	Z-829	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-830	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-831	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-832	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-833	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-834	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
		Globorotalia			
3	Z-835	truncatulinoides	MOC-1_T7_N5	100-200	left coiling
	7.026	Globorotalia	3.60G 1 TT 315	100 200	
3	Z-836	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
	7 00 7	Globorotalia	1.60G 1. TT 1.15	100 200	
3	Z-837	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
_	7.020	Globorotalia	MOC 1 TO NO	100 200	
3	Z-838	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
2	7 020	Globorotalia	MOC 1 T7 N5	100 200	. 1
3	Z-839	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
3	7 940	Globorotalia	MOC 1 T7 N5	100 200	nialet acilina
3	Z-840	truncatulinoides Globorotalia	MOC-1_T7_N5	100-200	right coiling
3	Z-841	truncatulinoides	MOC-1 T7 N5	100-200	right agiling
3	Z-041	Globorotalia	WIOC-1_1/_N3	100-200	right coiling
3	Z-842	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
3	2-0-2	Globorotalia	WIOC-1_17_N3	100-200	right coming
3	Z-843	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
	_ UTJ	Globorotalia	14100 1_17_143	100-200	iight coming
3	Z-844	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
	_ 3.1	Globorotalia	1,1001_1/_110	100 200	But 6011111B
3	Z-845	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
	_ 3.0	Globorotalia	1.1001_1/_1/0	100 200	
3	Z-846	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
		Globorotalia			5 6
3	Z-847	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
		Globorotalia			
3	Z-848	truncatulinoides	MOC-1 T7 N5	100-200	right coiling
		Globorotalia			
3	Z-849	truncatulinoides	MOC-1_T7_N5	100-200	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
3	Z-850	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-851	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-852	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-853	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-854	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-855	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-856	truncatulinoides	MOC-1_T7_N5	100-200	right coiling
		Globorotalia			
3	Z-857	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
		Globorotalia			
3	Z-858	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
		Globorotalia			
3	Z-859	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
		Globorotalia			
3	Z-860	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
	7.061	Globorotalia	N 60 G 1 TO N 5	100 200	
3	Z-861	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
	7.060	Globorotalia	N 60 G 1 TO N 5	100 200	
3	Z-862	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
2	7.063	Globorotalia	MOC 1 TO NO	100 200	1.0. '1'
3	Z-863	truncatulinoides	MOC-1_T8_N5	100-200	left coiling
2	7.064	Globorotalia	MOC 1 TO NO	100 200	1.0 11
3	Z-864		MOC-1_T8_N5	100-200	left coiling
2	7 965	Globorotalia	MOC 1 TO NE	100 200	10 P 00:11:00
3	Z-865	truncatulinoides Globorotalia	MOC-1_T8_N5	100-200	left coiling
2	7 966		MOC 1 TO NE	100 200	right coiling, reddish
3	Z-866	truncatulinoides Globorotalia	MOC-1_T8_N5	100-200	cytoplasm right coiling, reddish
2	7 967		MOC 1 TO NE	100 200	S
3	Z-867	truncatulinoides Globorotalia	MOC-1_T8_N5	100-200	cytoplasm
3	7 040		MOC 1 TO NE	100 200	right coiling, reddish
3	Z-868	truncatulinoides Claboratalia	MOC-1_T8_N5	100-200	cytoplasm
3	Z-869	Globorotalia truncatulinoides	MOC-1 T8 N5	100-200	right coiling, reddish
3	L-009	Globorotalia	1V1OC-1_10_1N3	100-200	cytoplasm right coiling, reddish
2	7 970		MOC 1 TO NE	100 200	<u> </u>
3	Z-870	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			right coiling, reddish
3	Z-871	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, reddish
3	Z-872	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, reddish
3	Z-873	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-874	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-875	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-876	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-877	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-878	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-879	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-880	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-881	truncatulinoides	MOC-1 T8 N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-882	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-883	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-884	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-885	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-886	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-887	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-888	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globorotalia			right coiling, green color
3	Z-889	truncatulinoides	MOC-1_T8_N5	100-200	cytoplasm
		Globigerinella			
3	Z-890	aequilateralis	MOC-1_T8_N5	100-200	
		Globigerinella			
3	Z-891	aequilateralis	MOC-1_T8_N5	100-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globigerinella			
3	Z-892	aequilateralis	MOC-1_T8_N5	100-200	
		Globigerinella			
3	Z-893	aequilateralis	MOC-1_T8_N5	100-200	
		Globigerinella			
3	Z-894	aequilateralis	MOC-1_T8_N5	100-200	
		Globigerinella			
	Z-895	aequilateralis	MOC-1_T8_N5	100-200	
3	Z-896	0 1 0	MOC-1_T8_N5	100-200	
3	Z-897	Hastigerina pelagica	MOC-1_T8_N5	100-200	
3	Z-898	Globorotalia hirsuta	MOC-1_T8_N5	100-200	
	Z-899	Orbulina universa	MOC-1_T8_N5	100-200	
	Z-900		MOC-1_T8_N5	100-200	
3	Z-901	Orbulina universa	MOC-1_T8_N5	100-200	
		Globorotalia			
3	Z-902	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
		Globorotalia			
3	Z-903	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
		Globorotalia			
3	Z-904	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
		Globorotalia			
3	Z-905	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
		Globorotalia			
3	Z-906	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
		Globorotalia			
3	Z-907	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
		Globorotalia			
3	Z-908	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
	-	Globorotalia	3.60.61.70.314	• • • • • • •	
3	Z-909		MOC-1_T8_N4	200-400	left coiling
2	7.010	Globorotalia	MOC 1 TO MA	200 400	1.6 '1'
3	Z-910	truncatulinoides	MOC-1_T8_N4	200-400	left coiling
2	7.011	Globorotalia	MOC 1 TO MA	200 400	. 1
3	Z-911	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
	7.012	Globorotalia	MOC 1 TO MA	200 400	. 1
3	Z-912	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
2	7.013	Globorotalia	MOC 1 TO NA	200 400	ututa aattu a
3	Z-913	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
2	7.014	Globorotalia	MOC 1 TO NIA	200 400	might agiling
3	Z-914	truncatulinoides Claboratalia	MOC-1_T8_N4	200-400	right coiling
2	7 015	Globorotalia	MOC 1 TO NIA	200 400	might agiling
3	Z-915	truncatulinoides	MOC-1_T8_N4	200-400	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		Globorotalia			
3	Z-916	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
		Globorotalia			
3	Z-917	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
		Globorotalia			
3	Z-918	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
		Globorotalia			
3	Z-919	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
_		Globorotalia			
3	Z-920	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
	- 001	Globorotalia	3.600 4 700 374	• • • • • • •	
3	Z-921	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
	7.000	Globorotalia	1.60G 1. TO 314	200 400	
3	Z-922	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
2	7.000	Globorotalia	N 60 C 1 TO N 4	200 400	
3	Z-923	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
_	7.024	Globorotalia	MOC 1 TO NA	200 400	
3	Z-924	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
_	7.025	Globorotalia	MOC 1 TO NA	200 400	. 1
3	Z-925	truncatulinoides	MOC-1_T8_N4	200-400	right coiling
_	7.026	Globorotalia	MOC 1 TO NO	400 600	1.0. '1'
3	Z-926	truncatulinoides Globorotalia	MOC-1_T8_N3	400-600	left coiling
3	7 027		MOC-1 T8 N3	400-600	1.A:1:
3	Z-927	truncatulinoides Globorotalia	WIOC-1_18_N3	400-000	left coiling
3	Z-928	truncatulinoides	MOC-1 T8 N3	400-600	right coiling
3	L-920	Globorotalia	WIOC-1_18_N3	400-000	right coming
3	Z-929	truncatulinoides	MOC-1 T8 N3	400-600	right coiling
	2-727	Globorotalia	WIOC-1_10_1\(\sigma\)	400-000	right coming
3	Z-930	truncatulinoides	MOC-1 T8 N3	400-600	right coiling
	2 750	Globorotalia	1000 1_10_113	400 000	right coming
3	Z-931	truncatulinoides	MOC-1 T8 N3	400-600	right coiling
	2 /31	Globorotalia	11001_10_113	100 000	right coming
3	Z-932	truncatulinoides	MOC-1 T8 N6	50-100	right coiling
		Globorotalia			<i>6</i>
3	Z-933	truncatulinoides	MOC-1 T8 N6	50-100	right coiling
4	Z-934	Orbulina universa	Ring Net	0-200	
4	Z-935	Orbulina universa	Ring Net	0-200	
		Globigerinella			
4	Z-936	aequilateralis	Ring Net	0-200	
4	Z-937	Globigerinoides ruber	Ring Net	0-200	
4	Z-938	Globigerinoides ruber	Ring Net	0-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
4	Z-939	Globigerinoides ruber	Ring Net	0-200	
		Globorotalia			
4	Z-940	truncatulinoides	Ring Net	0-200	right coiling
		Globorotalia			
4	Z-941	truncatulinoides	Ring Net	0-200	right coiling
		Globorotalia			
4	Z-942	truncatulinoides	Ring Net	0-200	right coiling
		Globorotalia			
4	Z-943	truncatulinoides	Ring Net	0-200	right coiling
		Globorotalia			
4	Z-944	truncatulinoides	Ring Net	0-200	right coiling
		Globorotalia			
4	Z-945	truncatulinoides	Ring Net	0-200	right coiling
		Globorotalia			
4	Z-946	truncatulinoides	MOC-10_T:	5_N4	right coiling
		Globorotalia			
4	Z-947	truncatulinoides	MOC-10_T	5_N4	right coiling
		Globorotalia			-
4	Z-948	truncatulinoides	MOC-10_T:	5_N4	right coiling
		Globorotalia			
4	Z-949	truncatulinoides	MOC-10_T	5_N4	right coiling
		Globorotalia			-
4	Z-950	truncatulinoides	MOC-10_T:	5_N4	right coiling
		Globorotalia			
4	Z-951	truncatulinoides	MOC-10_T:	5_N4	right coiling
4	Z-952	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-953	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-954	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-955	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-956	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-957	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-958	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-959	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-960	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-961	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-962	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-963	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-964	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-965	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-966	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-967	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-968	Orbulina universa	MOC-1_T9_N5	100-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
4	Z-969	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-970	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-971	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-972	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-973	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-974	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-975	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-976	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-977	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-978	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-979	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-980	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-981	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-982	Orbulina universa	MOC-1 T9 N5	100-200	
4	Z-983	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-984	Orbulina universa	MOC-1_T9_N5	100-200	
4	Z-985	Orbulina universa	MOC-1_T9_N5	100-200	
		Globorotalia			
4	Z-986	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-987	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-988	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-989	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-990	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-991	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-992	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-993	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-994	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-995	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
4	Z-996	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
		Globorotalia			
	Z-997	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
4	Z-998	Globorotalia	MOC-1_T9_N5	100-200	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
		truncatulinoides			
		Globorotalia			
4	Z-999	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1000	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1001	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1002	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1003	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1004	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1005	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia			
4	1006	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia	3.60G 1 TO 315	100 200	
4	1007	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
	Z-	Globorotalia	3.60G 1 TO 315	100 200	
4	1008	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
4	Z-	Globorotalia	MOC 1 TO NE	100 200	.:.1.4 :11:
4	1009	truncatulinoides	MOC-1_T9_N5	100-200	right coiling
1	Z- 1010	Globorotalia	MOC-1 T9 N5	100-200	might agiling
4	Z-	truncatulinoides Globorotalia	MOC-1_19_N3	100-200	right coiling
4	1011	truncatulinoides	MOC-1 T9 N5	100-200	right poiling
4	Z-	Globorotalia	MOC-1_19_N3	100-200	right coiling
4	1012	truncatulinoides	MOC-1 T9 N5	100-200	right coiling
7	Z-	Globorotalia	WIOC-1_19_1N3	100-200	right coming
4	1013	truncatulinoides	MOC-1 T9 N5	100-200	right coiling
T	Z-	Globorotalia	111001_17_113	100 200	iight connig
4	1014	truncatulinoides	MOC-1 T9 N5	100-200	right coiling
T	Z-	Globorotalia	111001_17_113	100 200	iight connig
4	1015	truncatulinoides	MOC-1 T9 N5	100-200	right coiling
	Z-	Globorotalia	1.100 1_17_110	100 200	
4	1016	truncatulinoides	MOC-1 T9 N5	100-200	right coiling
-	Z-	Globorotalia			6
4	1017	truncatulinoides	MOC-1 T9 N5	100-200	right coiling
-	Z-	Globorotalia			<u> </u>
4	1018	truncatulinoides	MOC-1 T9 N5	100-200	left coiling
4	Z-	Globorotalia	MOC-1 T9 N5	100-200	left coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1019	truncatulinoides			
	Z-	Globorotalia			
4	1020	truncatulinoides	MOC-1_T9_N5	100-200	left coiling
	Z-	Globorotalia			
4	1021	truncatulinoides	MOC-1_T9_N5	100-200	left coiling
	Z-	Globorotalia			
4	1022	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
	Z-	Globorotalia			
4	1023	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
	Z-	Globorotalia			
4	1024	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
	Z-	Globorotalia			
4	1025	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
_	Z-	Globorotalia			
4	1026	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
_	Z-	Globorotalia			
4	1027	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
	Z-	Globorotalia	1.60 C 1 T10 114	200 400	1.0 '''
4	1028	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
	Z-	Globorotalia	1.60 C 1 T10 114	200 400	1.0 '''
4	1029	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
4	Z-	Globorotalia	MOC 1 T10 N4	200 400	1.6. 11
4	1030	truncatulinoides	MOC-1_T10_N4	200-400	left coiling
4	Z-	Globorotalia	MOC 1 T10 N4	200 400	1.0
4	1031	truncatulinoides Globorotalia	MOC-1_T10_N4	200-400	left coiling
4	Z- 1032	truncatulinoides	MOC 1 T10 N4	200-400	left soiling
4	Z-	Globorotalia	MOC-1_T10_N4	200-400	left coiling
4	1033	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
4	Z-	Globorotalia	WIOC-1_110_N4	200-400	right coming
4	1034	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
	Z-	Globorotalia	WIOC-1_110_1\4	200-400	right coming
4	1035	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
7	Z-	Globorotalia	1/100-1_110_114	200-400	iight coming
4	1036	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
-	Z-	Globorotalia	1.1001_110_111	200 100	
4	1037	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
	Z-	Globorotalia	1.10 0 1_110_1(1	200 .00	
4	1038	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
	Z-	Globorotalia			G
4	1039	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
4	Z-	Globorotalia	MOC-1 T10 N4	200-400	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1040	truncatulinoides			
	Z-	Globorotalia			
4	1041	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1042	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1043	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1044	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1045	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1046	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1047	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia			
4	1048	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia	3.60G 1 T10 314	200 400	
4	1049	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-	Globorotalia	NOC 1 T10 N4	200 400	
4	1050	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
4	Z-	Globorotalia	MOC 1 T10 NA	200 400	. 14 - 11
4	1051	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
4	Z-	Globorotalia	MOC 1 T10 NA	200 400	.:.1.4 :11:
4	1052	truncatulinoides Globorotalia	MOC-1_T10_N4	200-400	right coiling
4	Z- 1053	Gioborotaiia truncatulinoides	MOC 1 T10 N4	200-400	might agiling
4	1033 Z-	Globorotalia	MOC-1_T10_N4	200-400	right coiling
4	1054	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
4	Z-	Globorotalia	MOC-1_110_N4	200-400	right coming
4	1055	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
-	Z-	ii uncaiuiinoiaes	1000-1_110_114	200 -1 00	right coming
4	1056				No buffer
_	Z-	Globorotalia			110 001101
4	1057	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
т_т	Z-	Globorotalia	1,100 1_110_114	200 700	iight coming
4	1058	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
<u> </u>	Z-	Globorotalia	1,100 1_110_114	200 100	ngm voning
4	1059	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
<u> </u>	Z-	Globorotalia	1,1001_110_111	200 100	
4	1060	truncatulinoides	MOC-1 T10 N4	200-400	right coiling
4	Z-	Globorotalia	MOC-1 T10 N4	200-400	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1061	truncatulinoides			
	Z-	Globorotalia			
4	1062	truncatulinoides	MOC-1_T10_N4	200-400	right coiling
	Z-				
4	1063	Orbulina universa	MOC-1_T10_N7	25-50	
	Z-				
4	1064	Orbulina universa	MOC-1_T9_N7	25-50	
	Z-) 10 C 1 TO NO	25.50	
4	1065	Orbulina universa	MOC-1_T9_N7	25-50	
4	Z-	0.1.1:	MOC 1 TO NO	25.50	
4	1066	Orbulina universa	MOC-1_T9_N7	25-50	
4	Z- 1067	Orbulina universa	MOC-1 T9 N7	25-50	
4	Z-	Globorotalia	MOC-1_19_N/	23-30	
4	1068	truncatulinoides	MOC-1 T9 N7	25-50	right coiling
	Z-	Globorotalia	WIOC-1_17_1\(\frac{1}{2}\)	23-30	right coming
4	1069	truncatulinoides	MOC-1 T9 N7	25-50	right coiling
	Z-	ii iiiicaiiiiiiioiaes	11001_19_117	23 30	right coming
4	1070	Globigerinoides ruber	MOC-1 T9 N7	25-50	
	Z-	Globigerinoides			
4	1071	sacculifer	MOC-1 T9 N7	25-50	
	Z-	Globigerinoides			
4	1072	sacculifer	MOC-1_T9_N7	25-50	
	Z-				
4	1073	Orbulina universa	MOC-1_T9_N7	25-50	
	Z-				
4	1074	Orbulina universa	MOC-1_T9_N7	25-50	
	Z-				N. 1. 00
4	1075				No buffer
1	Z-	Oubailin a minera	MOC 1 TO NO	25.50	
4	1076	Orbulina universa	MOC-1_T9_N7	25-50	
4	Z- 1077	Orbulina universa	MOC-1 T9 N7	25-50	
4	Z-	Orvuttna universa	MOC-1_19_N/	23-30	
4	1078	Globigerinoides ruber	MOC-1 T9 N5	100-200	
	Z-	Globigerinella	1/100 1_17_1/3	100-200	
4	1079	aequilateralis	MOC-1 T9 N5	100-200	
<u> </u>	Z-	Globigerinella	1,1001_17_110	100 200	
4	1080	aequilateralis	MOC-1 T9 N5	100-200	
	Z-	· · · · · · · · · · · · · · · · · · ·			
4	1081				No buffer
4	Z-	Globigerinella	MOC-1_T9_N5	100-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1082	aequilateralis			
	Z-	Globigerinella			
4	1083	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1084	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1085	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1086	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1087	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1088	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1089	aequilateralis	MOC-1_T9_N5	100-200	
	Z-	Globigerinella			
4	1090	aequilateralis	MOC-1_T9_N5	100-200	
	Z-		1.60G 1. TO 1.10		
4	1091	Hastigerina pelagica	MOC-1_T9_N8	0-25	
4	Z-	77 1 .	MOC 1 TO NO	0.25	
4	1092	Hastigerina pelagica	MOC-1_T9_N8	0-25	
4	Z-	Clabia animai dan amban	MOC 1 TO NO	0.25	
4	1093 Z-	Globigerinoides ruber	MOC-1_T9_N8	0-25	
4	1094	Clabicanin aidas muban	MOC-1 T9 N8	0-25	
4	Z-	Globigerinoides ruber Globigerinoides	WOC-1_19_No	0-23	
4	1095	sacculifer	MOC-1 T9 N8	0-25	
	Z-	Globigerinoides	WOC-1_17_1V0	0-23	
4	1096	sacculifer	MOC-1 T9 N8	0-25	
-	Z-	Globigerinoides	1,1001_17_10	0 20	
4	1097	sacculifer	MOC-1 T9 N8	0-25	
	Z-	Globigerinoides	1.1001_17_110	5 25	
4	1098	sacculifer	MOC-1 T9 N8	0-25	
-	Z-	Globigerinoides		3 25	
4	1099	sacculifer	MOC-1 T9 N8	0-25	
	Z-	Globigerinoides			
4	1100	sacculifer	MOC-1 T9 N8	0-25	
	Z-	Globigerinoides			
4	1101	sacculifer	MOC-1 T9 N8	0-25	
	Z-	Globigerinoides			
4	1102	sacculifer	MOC-1_T9_N8	0-25	
4	Z-	Globigerinoides	Ring Net	0-50	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1103	sacculifer			
	Z-	Globigerinoides			
4	1104	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1105	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1106	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1107	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1108	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1109	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1110	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1111	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1112	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1113	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1114	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides	D' M	0.50	
4	1115	sacculifer	Ring Net	0-50	
4	Z-	Globigerinoides	D' NI	0.50	
4	1116	sacculifer	Ring Net	0-50	
4	Z-	Globigerinoides	Din a Nat	0.50	
4	1117 Z-	sacculifer	Ring Net	0-50	
4	1118	Globigerinoides sacculifer	Ring Net	0-50	
4	Z-	Globigerinoides	King Net	0-30	
4	1119	sacculifer	Ring Net	0-50	
4	Z-	Globigerinoides	King Net	0-30	
4	1120	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides	King Net	0-20	
4	1121	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides	King Ive	0.50	
4	1122	sacculifer	Ring Net	0-50	
–	Z-	Globigerinoides	Tang 110t		
4	1123	sacculifer	Ring Net	0-50	
4	Z-	Globigerinoides	Ring Net	0-50	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1124	sacculifer			
	Z-	Globigerinoides			
4	1125	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1126	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1127	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides			
4	1128	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides	D	2.52	
4	1129	sacculifer	Ring Net	0-50	
	Z-	Globigerinoides	D	2.52	
4	1130	sacculifer	Ring Net	0-50	
4	Z-		D: N-4	0.50	
4	1131	Orbulina universa	Ring Net	0-50	
1	Z-	Oubuling a main and a	Ding Not	0.50	
4	1132 Z-	Orbulina universa	Ring Net	0-50	
4	1133	Orbulina universa	Ring Net	0-50	
7	Z-	Orbuitha universa	King Net	0-30	
4	1134	Globigerinoides ruber	Ring Net	0-50	pink cytoplasm
	Z-	Giobigerinoides ruber	King Net	0-30	рик суюрази
4	1135	Globigerinoides ruber	Ring Net	0-50	pink cytoplasm
•	Z-	Grootger motices rucer	Ting I to	0.50	ринсеуториали
4	1136	Globigerinoides ruber	Ring Net	0-50	pink cytoplasm
	Z-	3	8		je system
4	1137	Globigerinoides ruber	Ring Net	0-50	pink cytoplasm
	Z-				
4	1138	Globigerinoides ruber	Ring Net	0-50	pink cytoplasm
	Z-				
4	1139	Globigerinita glutinata	Ring Net	0-50	
	Z-				
4	1140	Globigerinita glutinata	Ring Net	0-50	
	Z-				
4	1141	Globigerinita glutinata	Ring Net	0-50	
	Z-				
4	1142	Globigerinita glutinata	Ring Net	0-50	
	Z-				
4	1143	Globigerinita glutinata	Ring Net	0-50	
_	Z-		D. 37	0.50	
4	1144	Globigerinita glutinata	Ring Net	0-50	
4	Z-	Globigerinella	Ring Net	0-50	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1145	aequilateralis	V 1		
	Z-	Globigerinella			
4	1146	aequilateralis	Ring Net	0-50	
	Z-	Globigerinella			
4	1147	aequilateralis	Ring Net	0-50	
	Z-	Globigerinella			
4	1148	aequilateralis	Ring Net	0-50	
	Z-	Globigerinella			
4	1149	aequilateralis	Ring Net	0-50	
	Z-				
4	1150	Globigerinita glutinata	Ring Net	0-50	
	Z-				
5	1151	Orbulina universa	Ring Net	0-35	
	Z-				
5	1152	Orbulina universa	Ring Net	0-35	
	Z-				
5	1153	Orbulina universa	Ring Net	0-35	
	Z-				
5	1154	Orbulina universa	Ring Net	0-35	
	Z-				
5	1155	Orbulina universa	Ring Net	0-35	
_	Z-				
5	1156	Orbulina universa	Ring Net	0-35	
_	Z-		- · · · · ·	0.05	
5	1157	Orbulina universa	Ring Net	0-35	
_	Z-		D' M	0.25	
5	1158	Orbulina universa	Ring Net	0-35	
_	Z-	0.1.1:	D' M	0.25	
5	1159	Orbulina universa	Ring Net	0-35	
5	Z-	Orbelie - maiore	Din a Nat	0.25	
3	1160	Orbulina universa	Ring Net MOC-	0-35	
5	Z- 1161	Ouhuling universe	1 T11,12 N8	0-25	
3	Z-	Orbulina universa	MOC-	0-23	
5	2- 1162	Orbulina universa	1 T11,12 N8	0-25	
3	7102 Z-	Orvaiina universa	MOC-	0-23	
5	1163	Orbulina universa	1 T11,12 N8	0-25	
3	Z-	Orvanna universa	MOC-	0-23	
5	1164	Orbulina universa	1 T11,12 N8	0-25	
3	Z-	Orvanna universa	MOC-	0-23	
5	1165	Orbulina universa	1 T11,12 N8	0-25	
5	Z-	Orbulina universa	MOC-	0-25	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1166		1_T11,12_N8		
	Z-		MOC-		
5	1167	Globigerinoides ruber	1_T11,12_N8	0-25	White shell
	Z-		MOC-		
5	1168	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
	Z-		MOC-		
5	1169	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
_	Z-		MOC-	0.05	
5	1170	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
_	Z-	C1 1 · · · 1 1	MOC-	0.25	D' 1 1 11
5	1171	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
_	Z-	C1.1:	MOC-	0.25	D: .1111
5	1172	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
5	Z- 1173	Clahiganinaidag muhan	MOC- 1 T11,12 N8	0-25	Pink shell
3	Z-	Globigerinoides ruber	MOC-	0-23	FIIIK SHEH
5	1174	Globigerinoides ruber	1 T11,12 N8	0-25	Pink shell
	Z-	Giodigerinoides ruber	MOC-	0-23	I HIK SHCH
5	1175	Globigerinoides ruber	1 T11,12 N8	0-25	Pink shell
	Z-	Grootzer motues ruber	MOC-	0 23	THE SHOT
5	1176	Globigerinoides ruber	1 T11,12 N8	0-25	Pink shell
	Z-		MOC-	0 20	
5	1177	Globigerinoides ruber	1 T11,12 N8	0-25	Pink shell
	Z-	<u> </u>	MOC-		
5	1178	Globigerinoides ruber	1 T11,12 N8	0-25	Pink shell
	Z-		MOC-		
5	1179	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
	Z-		MOC-		
5	1180	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
	Z-		MOC-		
5	1181	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
	Z-		MOC-		
5	1182	Globigerinoides ruber	1_T11,12_N8	0-25	Pink shell
_	Z-	Globigerinoides	MOC-	0.25	
5	1183	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1184	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1185	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1186	sacculifer	1_T11,12_N8	0-25	
)	Z-	Globigerinoides	MOC-	0-25	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1187	sacculifer	1_T11,12_N8		
	Z-	Globigerinoides	MOC-		
5	1188	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1189	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1190	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1191	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1192	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1193	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1194	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1195	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1196	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1197	sacculifer	1_T11,12_N8	0-25	
	Z-	Globigerinoides	MOC-		
5	1198	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1199	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1200	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1201	sacculifer	1_T11,12_N8	0-25	
_	Z-	Globigerinoides	MOC-	0.25	
5	1202	sacculifer	1_T11,12_N8	0-25	
_	Z-	Candoina niti 1 -	MOC-	0.25	
5	1203	Candeina nitida	1_T11,12_N8	0-25	
5	Z-	Candoina nitida	MOC-	0.25	
5	1204 Z-	Candeina nitida	1_T11,12_N8 MOC-	0-25	
5	1205	Globorotalia menardii		0-25	
3	1203 Z-		1_T11,12_N8 MOC-	0-23	
5	1206	Neogloboquadrina dutertrei	1 T11,12 N8	0-25	
3	1206 Z-	Neogloboquadrina	MOC-	0-23	
5				0-25	
5	1207 Z-	dutertrei Candeina nitida	1_T11,12_N8 MOC-1_T11_N7	0-25 25-50	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1208				
	Z-				
5	1209	Candeina nitida	MOC-1_T11_N7	25-50	
	Z-				
5	1210	Candeina nitida	MOC-1_T11_N7	25-50	
_	Z-				
5	1211	Candeina nitida	MOC-1_T11_N7	25-50	
-	Z-		MOC 1 T11 NT	25.50	
5	1212	Candeina nitida	MOC-1_T11_N7	25-50	
_	Z-	C 1 .:: /: 1	MOC 1 T11 N7	25.50	
5	1213	Candeina nitida	MOC-1_T11_N7	25-50	
5	Z- 1214	Candeina nitida	MOC-1 T11 N7	25-50	
3	Z-	Neogloboquadrina	MOC-1_111_N/	23-30	
5	1215	dutertrei	MOC-1 T11 N7	25-50	
3	Z-	Neogloboquadrina	WIOC-1_111_IV/	23-30	
5	1216	dutertrei	MOC-1 T11 N7	25-50	
3	Z-	Neogloboquadrina	WIGG I_III_IV	23 30	
5	1217	dutertrei	MOC-1 T11 N7	25-50	
	Z-	Neogloboquadrina	111001_111_1()	2000	
5	1218	dutertrei	MOC-1 T11 N7	25-50	
	Z-	Neogloboquadrina			
5	1219	dutertrei	MOC-1_T11_N7	25-50	
	Z-	Neogloboquadrina			
5	1220	dutertrei	MOC-1_T11_N7	25-50	
	Z-	Neogloboquadrina			
5	1221	dutertrei	MOC-1_T11_N7	25-50	
	Z-				
5	1222	Orbulina universa	MOC-1_T11_N7	25-50	thick shell
_	Z-				
5	1223	Orbulina universa	MOC-1_T11_N7	25-50	thick shell
_	Z-	0.1.1:	MOC 1 TILL NO	25.50	4:1 1 11
5	1224	Orbulina universa	MOC-1_T11_N7	25-50	thick shell
_	Z-	Ouhlini	MOC 1 T11 N7	25.50	thial aball
5	1225 Z-	Orbulina universa	MOC-1_T11_N7	25-50	thick shell
5	Z- 1226	Orbulina universa	MOC-1 T11 N7	25-50	thick shell
J	Z-	Orvuina universa	1V1OC-1_111_IN/	25-50	HICK SHEII
5	1227	Orbulina universa	MOC-1 T11 N7	25-50	thick shell
5	Z-	Orvanna universa	1V1OC-1_111_IN/	25-50	HIER SHEII
5	1228	Orbulina universa	MOC-1 T11 N7	25-50	thin shell (soap bubble)
5	Z-	Orbulina universa	MOC-1 T11 N7	25-50	thin shell (soap bubble)

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1229				
_	Z-	0-1-1	MOC 1 T11 N7	25.50	thin shall (saan hubble)
5	1230 Z-	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
5	1231	Orbulina universa	MOC-1 T11 N7	25-50	thin shell (soap bubble)
	Z-	orewina universa		2000	um suem (soup outcore)
5	1232	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
	Z-				
5	1233	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
_	Z-	0.1.1:	MOC 1 T11 N7	25.50	41.1111 (11.1.1.)
5	1234 Z-	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
5	1235	Orbulina universa	MOC-1 T11 N7	25-50	thin shell (soap bubble)
	Z-	orewina universa		2000	um suem (soup outcore)
5	1236	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
	Z-				
5	1237	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
_	Z- 1238	0-1-1:	MOC 1 T11 N7	25.50	thin shall (saan hubble)
5	1238 Z-	Orbulina universa	MOC-1_T11_N7	25-50	thin shell (soap bubble)
5	1239	Globigerinoides ruber	MOC-1 T11 N7	25-50	
	Z-	2100180111011101			
5	1240	Globigerinoides ruber	MOC-1_T11_N7	25-50	
	Z-				
5	1241	Globigerinoides ruber	MOC-1_T11_N7	25-50	
5	Z- 1242	Clahiganinaidaa muhan	MOC-1 T11 N7	25-50	
3	Z-	Globigerinoides ruber	WIOC-1_111_N/	23-30	
5	1243	Globigerinoides ruber	MOC-1 T11 N7	25-50	
	Z-	3			
5	1244	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
	Z-				
5	1245	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
5	Z-	Clabicavinai das mili	MOC-1 T11 N7	25.50	nink shall
3	1246 Z-	Globigerinoides ruber	IVIOC-1_111_N/	25-50	pink shell
5	1247	Globigerinoides ruber	MOC-1 T11 N7	25-50	pink shell
	Z-	2.30.82			F
5	1248	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
	Z-				
5	1249	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
5	Z-	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1250				
	Z-				
5	1251	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
	Z-				
5	1252	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
	Z-				
5	1253	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
_	Z-	C1 1 · · · 1 1	MOC 1 TII NO	25.50	. 1 1 11
5	1254	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
5	Z- 1255	Clahiganin aidas muhan	MOC-1 T11 N7	25-50	nink shall
3	1233 Z-	Globigerinoides ruber	MOC-1_111_N/	23-30	pink shell
5	1256	Globigerinoides ruber	MOC-1 T11 N7	25-50	pink shell
	Z-	Giobigei moides i doci	141001_111_117	23 30	prink sheri
5	1257	Globigerinoides ruber	MOC-1 T11 N7	25-50	pink shell
	Z-				1
5	1258	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
	Z-				
5	1259	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
	Z-				
5	1260	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell
_	Z-		1.000 1 T11 N7	25.50	
5	1261	Globigerinoides ruber	MOC-1_T11_N7	25-50	pink shell, 6 individuals
5	Z-	Globigerinoides	MOC 1 T11 N7	25.50	
5	1262 Z-	sacculifer Globigerinoides	MOC-1_T11_N7	25-50	
5	1263	sacculifer	MOC-1 T11 N7	25-50	
3	Z-	Globigerinoides	WIOC I_III_IV/	23 30	
5	1264	sacculifer	MOC-1 T11 N7	25-50	
	Z-	Globigerinoides			
5	1265	sacculifer	MOC-1_T11_N7	25-50	
	Z-	Globigerinoides			
5	1266	sacculifer	MOC-1_T11_N7	25-50	
	Z-	Globigerinoides			
5	1267	sacculifer	MOC-1_T11_N7	25-50	
_	Z-	Globigerinoides			
5	1268	sacculifer	MOC-1_T11_N7	25-50	
	Z-	Globigerinoides	MOO 1 TILL NO	25.50	
5	1269	sacculifer	MOC-1_T11_N7	25-50	
5	Z- 1270	Globigerinoides sacculifer	MOC-1 T11 N7	25-50	
5	Z-	Globigerinoides	MOC-1_T11_N7	25-50	
J	L -	Giovigerinolaes	1V1OC-1_111_N/	25-50	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1271	sacculifer			
	Z-	Globigerinoides			
5	1272	sacculifer	MOC-1_T11_N7	25-50	
	Z-	Globigerinoides			
5	1273	sacculifer	MOC-1_T11_N7	25-50	
	Z-	Globigerinoides			
5	1274	sacculifer	MOC-1_T11_N7	25-50	
	Z-	Globigerinoides			
5	1275	sacculifer	MOC-1_T11_N7	25-50	
_	Z-	Globigerinoides			
5	1276	sacculifer	MOC-1_T11_N7	25-50	
_	Z-	Globigerinoides)	25.50	
5	1277	sacculifer	MOC-1_T11_N7	25-50	
_	Z-	Globigerinoides	MOG 1 T11 NT	25.50	a
5	1278	sacculifer	MOC-1_T11_N7	25-50	7 individuals
_	Z-	Globigerinella	MOC 1 TII NO	25.50	
5	1279	aequilateralis	MOC-1_T11_N7	25-50	
_	Z-	0.1.1:	MOC-	100 200	
5	1280	Orbulina universa	1_T11,12_N5	100-200	
5	Z- 1281	Oukuling amin ong g	MOC-	100-200	
5	Z-	Orbulina universa	1_T11,12_N5 MOC-	100-200	
5	1282	Orbulina universa	1 T11,12 N5	100-200	
3	Z-	Orduina universa	MOC-	100-200	
5	1283	Orbulina universa	1 T11,12 N5	100-200	
3	Z-	Orbanna aniversa	MOC-	100-200	
5	1284	Orbulina universa	1 T11,12 N5	100-200	
	Z-	Oromina universa	MOC-	100 200	
5	1285	Orbulina universa	1 T11,12 N5	100-200	
	Z-		MOC-	100 200	
5	1286	Orbulina universa	1 T11,12 N5	100-200	
	Z-		MOC-		
5	1287	Orbulina universa	1 T11,12 N6	50-100	thick shell
	Z-		MOC-		
5	1288	Orbulina universa	1 T11,12 N6	50-100	thick shell
	Z-		MOC-		thin shell (babble), mixed
5	1289	Orbulina universa	1_T11,12_N6	50-100	with G. menardii!!
	Z-		MOC-		thin shell (babble), mixed
5	1290	Orbulina universa	1_T11,12_N6	50-100	with G. menardii!!
	Z-	Globorotalia	MOC-		right coiling, mixed with G.
5	1291	truncatulinoides	1_T11,12_N5	100-200	menardii
5	Z-	Globorotalia	MOC-	50-100	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1292	truncatulinoides	1 T11,12 N6		
	Z-	Neogloboquadrina	MOC-		
5	1293	dutertrei	1 T11,12 N6	50-100	
	Z-	Neogloboquadrina	MOC-		
5	1294	dutertrei	1_T11,12_N6	50-100	
	Z-		MOC-		
5	1295	Hastigerina digitata	1_T11,12_N6	50-100	
	Z-		MOC-		
5	1296	Hastigerina digitata	1_T11,12_N6	50-100	
	Z-	Globigerinella	MOC-		
5	1297	aequilateralis	1_T11,12_N6	50-100	
	Z-	Globorotalia	MOC-		
5	1298	truncatulinoides	1_T11,12_N6	50-100	right coiling
	Z-	Globorotalia	MOC-		
5	1299	truncatulinoides	1_T11,12_N6	50-100	right coiling
	Z-	Globorotalia	MOC-		
5	1300	truncatulinoides	1_T11,12_N6	50-100	right coiling
	Z-	Globorotalia	MOC-		
5	1301	truncatulinoides	1_T11,12_N6	50-100	right coiling
	Z-	Globorotalia	MOC-		
5	1302	truncatulinoides	1_T11,12_N6	50-100	right coiling
	Z-	Globorotalia	MOC-		
5	1303	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-		
5	1304	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-	7 0.100	
5	1305	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-	50.100	
5	1306	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-	50 100	. 1
5	1307	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-	50 100	wight agiling
5	1308	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-	50 100	might agiling
5	1309	truncatulinoides	1_T11,12_N6	50-100	right coiling
_	Z-	Globorotalia	MOC-	50 100	might agiling
5	1310	truncatulinoides Claboratalia	1_T11,12_N6	50-100	right coiling
5	Z-	Globorotalia	MOC-	50 100	right agiling
5	1311	truncatulinoides Globorotalia	1_T11,12_N6 MOC-	50-100	right coiling
5	Z- 1312	truncatulinoides		50-100	right poiling
5			1_T11,12_N6		right coiling
3	Z-	Globorotalia	MOC-	50-100	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1313	truncatulinoides	1_T11,12_N6		
	Z-	Globorotalia	MOC-		
5	1314	truncatulinoides	1_T11,12_N6	50-100	right coiling
	Z-		MOC-		
5	1315	Hastigerina pelagica	1_T11,12_N4	200-400	
	Z-		MOC-		
5	1316	Hastigerina pelagica	1_T11,12_N4	200-400	
	Z-		MOC-		
5	1317	Hastigerina pelagica	1_T11,12_N4	200-400	
	Z-		MOC-		
5	1318	Hastigerina pelagica	1_T11,12_N4	200-400	
	Z-	Globorotalia	MOC-		
5	1319	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1320	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1321	truncatulinoides	1_T11,12_N4	200-400	right coiling
_	Z-	Globorotalia	MOC-	200 400	
5	1322	truncatulinoides	1_T11,12_N4	200-400	right coiling
_	Z-	Globorotalia	MOC-	200 400	* 1 / ***
5	1323	truncatulinoides	1_T11,12_N4	200-400	right coiling
_	Z-	Globorotalia	MOC-	200 400	
5	1324	truncatulinoides	1_T11,12_N4	200-400	right coiling
5	Z- 1325	Globorotalia	MOC-	200 400	might agiling
3	1323 Z-	truncatulinoides Globorotalia	1_T11,12_N4 MOC-	200-400	right coiling
5	1326	truncatulinoides	1 T11,12 N4	200-400	right coiling
3	Z-	Globorotalia	MOC-	200-400	right coming
5	1327	truncatulinoides	1 T11,12 N4	200-400	right coiling
5	Z-	Globorotalia	MOC-	200-400	iigiit comiig
5	1328	truncatulinoides	1 T11,12 N4	200-400	right coiling
	Z-	Globorotalia	MOC-	200 100	ngm voning
5	1329	truncatulinoides	1 T11,12 N4	200-400	right coiling
	Z-	Globorotalia	MOC-		0 4
5	1330	truncatulinoides	1 T11,12 N4	200-400	right coiling
	Z-	Globorotalia	MOC-		0 6
5	1331	truncatulinoides	1 T11,12 N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1332	truncatulinoides	1 T11,12 N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1333	truncatulinoides	1_T11,12_N4	200-400	right coiling
5	Z-	Globorotalia	MOC-	200-400	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1334	truncatulinoides	1_T11,12_N4		
	Z-	Globorotalia	MOC-		
5	1335	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1336	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1337	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1338	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1339	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1340	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1341	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1342	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1343	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1344	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1345	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1346	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1347	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1348	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1349	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1350	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1351	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-		
5	1352	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-	200 100	
5	1353	truncatulinoides	1_T11,12_N4	200-400	right coiling
	Z-	Globorotalia	MOC-	200 100	
5	1354	truncatulinoides	1_T11,12_N4	200-400	right coiling
5	Z-	Globorotalia	MOC-	200-400	right coiling

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1355	truncatulinoides	1_T11,12_N4		
	Z-		MOC-		
5	1356	Orbulina universa	1_T11,12_N4	200-400	
	Z-				
5	1357	Hastigerina pelagica	MOC-1_T9_N8	0-25	Station 4
	Z-				
5	1358	Hastigerina digitata	MOC-1_T13_N7	25-50	
	Z-	Globigerinella			
5	1359	aequilateralis	MOC-1_T13_N7	25-50	
	Z-				
5	1360	Hastigerina digitata	MOC-1_T13_N8	0-25	
_	Z-	Globigerinoides		a a z	
5	1361	sacculifer	MOC-1_T13_N8	0-25	
_	Z-	Globigerinoides	MOG 1 T12 NO	0.25	
5	1362	sacculifer	MOC-1_T13_N8	0-25	
_	Z-	Globigerinoides	MOG 1 T12 NO	0.25	
5	1363	sacculifer	MOC-1_T13_N8	0-25	
_	Z-	Neogloboquadrina	MOC 1 T12 NO	0.25	
5	1364	dutertrei	MOC-1_T13_N8	0-25	
_	Z-	Neogloboquadrina	MOC 1 T12 NO	0.25	
5	1365 Z-	dutertrei Globorotalia	MOC-1_T13_N8	0-25	
5	1366	truncatulinoides	MOC-1 T13 N8	0-25	right coiling
3	Z-	truncatutinotaes	NIOC-1_113_No	0-23	right coming
5	1367	Candeina nitida	Ring Net 75		
3	Z-	Canaema minaa	King Net 75		
5	1368	Candeina nitida	Ring Net 75		
	Z-	Canacina mitaa	Tang 110t 75		
5	1369	Candeina nitida	Ring Net 75		
	Z-	Neogloboquadrina	1		
5	1370	dutertrei	Ring Net 75		
	Z-	Neogloboquadrina	6-1111		
5	1371	dutertrei	Ring Net 75		
	Z-		6		
5	1372	Globorotalia menardii	MOC-1 T13 N1	800-1000	
	Z-				
5	1373	Hastigerina pelagica	MOC-1 T13 N3	400-600	
	Z-				
5	1374	Hastigerina pelagica	MOC-1_T13_N3	400-600	
	Z-	Neogloboquadrina			
5	1375	dutertrei	MOC-1_T13_N6	50-100	
5	Z-	Orbulina universa	MOC-1/4 T6 N7	70-90	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1376				
	Z-				
5	1377	Orbulina universa	MOC-1/4_T6_N7	70-90	
	Z-				
5	1378	Orbulina universa	MOC-1/4_T6_N7	70-90	
	Z-	Globigerinoides			
5	1379	sacculifer	MOC-1/4_T6_N7	70-90	
	Z-	Neogloboquadrina			
5	1380	dutertrei	MOC-1/4_T6_N7	70-90	
_	Z-	Neogloboquadrina	1 10 C 1 / 1 T C 1 T	7 0.00	
5	1381	dutertrei	MOC-1/4_T6_N7	70-90	
_	Z-	Neogloboquadrina	1 10 C 1 / 4 T C 1 T	7 0.00	
5	1382	dutertrei	MOC-1/4_T6_N7	70-90	
_	Z-	0.1.1:	MOC 1/4 TC N/4	120 150	
5	1383	Orbulina universa	MOC-1/4_T6_N4	120-150	
_	Z-				NI - 1 CC
5	1384				No buffer
5	Z- 1385	Orbulina universa	MOC-1/4 T6 N4	120-150	
5	1383 Z-	Orbuitha universa	MOC-1/4_10_N4	120-130	
5	1386	Globorotalia menardii	MOC-1/4 T6 N4	120-150	
3	Z-	Gioboroidila menarali	WIOC-1/4_10_1\4	120-130	
5	1387	Globorotalia menardii	MOC-1/4 T6 N4	120-150	
	Z-	Grobor ordina menaran	1/100 1/1_10_1/1	120 130	
5	1388	Globorotalia menardii	MOC-1/4 T6 N4	120-150	
	Z-	Storon orania menanan	1,100 1/ 1_10_1(1	120 120	
5	1389	Hastigerina digitata	MOC-1 T13 N5	100-200	
	Z-	<u> </u>			
5	1390	RADIOLARIAN	MOC-1 T13 N3	400-600	
	Z-				
5	1391	RADIOLARIAN	MOC-1_T13_N3	400-600	
	Z-				
5	1392	RADIOLARIAN	MOC-1_T13_N3	400-600	
	Z-				
5	1393	RADIOLARIAN	MOC-1_T13_N3	400-600	
	Z-				
5	1394	RADIOLARIAN	MOC-1_T13_N3	400-600	
	Z-				
5	1395	RADIOLARIAN	MOC-1_T13_N5	100-200	
	Z-				
5	1396	RADIOLARIAN	MOC-1_T13_N5	100-200	
5	Z-	RADIOLARIAN	MOC-1_T13_N6	50-100	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1397				
_	Z-	DADIOLADIAN	MOC 1 T12 N/	50.100	
5	1398 Z-	RADIOLARIAN	MOC-1_T13_N6	50-100	
5	1399	Candeina nitida	Ring Net	0-40	
3	Z-	Сапаста пта	King Net	0-40	
5	1400	Candeina nitida	Ring Net	0-40	
	Z-				
5	1401	Candeina nitida	Ring Net	0-40	
_	Z-	~		0.40	
5	1402	Candeina nitida	Ring Net	0-40	
5	Z- 1403	Candeina nitida	Ring Net	0-40	
3	Z-	Canaeina niiiaa	King Net	0-40	
5	1404	Candeina nitida	Ring Net	0-40	
	Z-				
5	1405	Candeina nitida	Ring Net	0-40	
_	Z-				
5	1406	Candeina nitida	Ring Net	0-40	
5	Z- 1407	Candeina nitida	Ring Net	0-40	
3	Z-	Canaeina niiiaa	King Net	0-40	
5	1408	Candeina nitida	Ring Net	0-40	
	Z-				
5	1409	Candeina nitida	Ring Net	0-40	
	Z-				
5	1410	Candeina nitida	Ring Net	0-40	
5	Z- 1411	Candeina nitida	Ring Net	0-40	
3	Z-	Сиписти птии	King Net	0-40	
5	1412	Candeina nitida	Ring Net	0-40	
	Z-				
5	1413	Candeina nitida	Ring Net	0-40	
_	Z-		D.		
5	1414	Candeina nitida	Ring Net	0-40	5 individuals
5	Z- 1415	Orbulina universa	Ding Not	0-40	thin shell (soap babble)
3	1413 Z-	Orvuitna universa	Ring Net	0-40	um sien (soap babbie)
5	1416	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
	Z-				(22
5	1417	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
5	Z-	Orbulina universa	Ring Net	0-40	thin shell (soap babble)

DNA				
ID	species	Net type	Depth (m)	Remarks
1418	•			
Z-				
1419	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
Z-				
1420	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
Z-				
	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
		D' 31.	0.40	4. 1.117 1.111
	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
		D' N	0.40	4' 1 117 1 111 \
	Orbulina universa	Ring Net	0-40	thin shell (soap babble)
	Oubuling aminous	Ding Not	0.40	thick shell (opaque)
	Orbuina universa	Killg Net	0-40	tilick slieli (opaque)
	Orbulina universa	Ring Net	0-40	thick shell (opaque)
	Orbaina universa	King Ivet	0-40	tillek shell (opaque)
	Orbulina universa	Ring Net	0-40	thick shell (opaque)
	OTOMINIA WITTERS	Time Time	0.10	unen snen (spaque)
	Orbulina universa	Ring Net	0-40	thick shell (opaque)
Z-		<u> </u>		(1.1.)
1429	Orbulina universa	Ring Net	0-40	thick shell (opaque)
Z-				` • •
1430	Orbulina universa	Ring Net	0-40	thick shell (opaque)
Z-				
1431	Globorotalia menardii	Ring Net	0-40	
Z-	Neogloboquadrina			
	dutertrei	Ring Net	0-40	
	0 1			
		Ring Net	0-40	
	0 1	D: 31.	0.40	
		King Net	0-40	
	<u> </u>	Dia ~ NI-4	0.40	
		King Net	0-40	
	0 1	Ding Not	0.40	
		King Net	0-40	
		Ring Not	0-40	
	3	King Nei	0-40	
	_	Ring Net	0-40	
	ID 1418 Z- 1419 Z- 1420 Z- 1421 Z- 1422 Z- 1423 Z- 1424 Z- 1425 Z- 1426 Z- 1427 Z- 1428 Z- 1429 Z- 1430 Z- 1431	ID species 1418 Z- 1419 Orbulina universa Z- 1420 Orbulina universa Z- 1421 Orbulina universa Z- 1422 Orbulina universa Z- 1423 Orbulina universa Z- 1424 Orbulina universa Z- 1425 Orbulina universa Z- 1426 Orbulina universa Z- 1427 Orbulina universa Z- 1428 Orbulina universa Z- 1429 Orbulina universa Z- 1430 Orbulina universa Z- 1431 Globorotalia menardii Z- Neogloboquadrina 1432 dutertrei Z- Neogloboquadrina 1433 dutertrei Z- Neogloboquadrina 1434 dutertrei Z- Neogloboquadrina 1435 dutertrei Z- Neogloboquadrina 1436 dutertrei Z- Globigerinoides 1437 sacculifer Z- Globigerinoides 1438 sacculifer	IDspeciesNet type1418Z-1419Orbulina universaRing NetZ-1420Orbulina universaRing NetZ-1421Orbulina universaRing NetZ-1422Orbulina universaRing NetZ-1423Orbulina universaRing NetZ-1424Orbulina universaRing NetZ-1425Orbulina universaRing NetZ-1426Orbulina universaRing NetZ-1427Orbulina universaRing NetZ-1428Orbulina universaRing NetZ-1429Orbulina universaRing NetZ-1430Orbulina universaRing NetZ-1431Globorotalia menardiiRing NetZ-NeogloboquadrinaRing Net1432dutertreiRing NetZ-NeogloboquadrinaRing Net1434dutertreiRing NetZ-NeogloboquadrinaRing Net1434dutertreiRing NetZ-NeogloboquadrinaRing Net1435dutertreiRing NetZ-NeogloboquadrinaRing Net1436dutertreiRing NetZ-Globigerinoides1437sacculiferRing NetZ-Globigerinoides1438sacculiferRing Net	IDspeciesNet typeDepth (m)1418Z-1419Orbulina universaRing Net0-40Z-1420Orbulina universaRing Net0-40Z-1421Orbulina universaRing Net0-40Z-1422Orbulina universaRing Net0-40Z-1423Orbulina universaRing Net0-40Z-1424Orbulina universaRing Net0-40Z-1425Orbulina universaRing Net0-40Z-1426Orbulina universaRing Net0-40Z-1427Orbulina universaRing Net0-40Z-1428Orbulina universaRing Net0-40Z-1429Orbulina universaRing Net0-40Z-1430Orbulina universaRing Net0-40Z-NeogloboquadrinaRing Net0-40Z-GlobigerinoidesRing Net0

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1439	sacculifer			
	Z-	Globigerinoides			
5	1440	sacculifer	Ring Net	0-40	
	Z-	Globigerinoides			
5	1441	sacculifer	Ring Net	0-40	
	Z-	Globigerinoides			
5	1442	sacculifer	Ring Net	0-40	
	Z-	Globorotalia			
5	1443	truncatulinoides	Ring Net	0-40	right coiling
	Z-	Globorotalia			
5	1444	truncatulinoides	Ring Net	0-40	right coiling
	Z-	Globorotalia			
5	1445	truncatulinoides	Ring Net	0-40	right coiling
	Z-	Globorotalia			
5	1446	truncatulinoides	Ring Net	0-40	right coiling
	Z-	Globorotalia			
5	1447	truncatulinoides	Ring Net	0-40	right coiling
	Z-	Globorotalia			
5	1448	truncatulinoides	Ring Net	0-40	right coiling
	Z-	Globigerinoides			
5	1449	pyramidalis	MOC-1/4_T6_N8	0-70	
	Z-				
5	1450	Candeina nitida	Reeve Net	0-200	
	Z-				
5	1451	Candeina nitida	Reeve Net	0-200	
_	Z-	~			
5	1452	Candeina nitida	Reeve Net	0-200	
_	Z-	~		0.00	
5	1453	Candeina nitida	Reeve Net	0-200	
_	Z-	Q 1 :1	D M	0.200	
5	1454	Candeina nitida	Reeve Net	0-200	
_	Z-	Q 1 :1	D M	0.200	
5	1455	Candeina nitida	Reeve Net	0-200	
_	Z-	Candoina:4: 1-	Dogge Not	0.200	
5	1456	Candeina nitida	Reeve Net	0-200	
_	Z-	Candoina:4: 1-	Dogge Not	0.200	
5	1457	Candeina nitida	Reeve Net	0-200	
5	Z-	Candaina niti 1	Dagya Mat	0.200	
5	1458	Candeina nitida	Reeve Net	0-200	
5	Z- 1459	Candeina nitida	Reeve Net	0.200	
5				0-200	
3	Z-	Candeina nitida	Reeve Net	0-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1460				
_	Z-		_		
5	1461	Candeina nitida	Reeve Net	0-200	
_	Z-	G 1 :1	D 11.	0.200	
5	1462	Candeina nitida	Reeve Net	0-200	
5	Z- 1463	Candeina nitida	Reeve Net	0-200	
3	Z-	Сапаета птаа	Recyc Net	0-200	
5	1464	Candeina nitida	Reeve Net	0-200	
	Z-		1100 (0 1 (0 1	0 200	
5	1465	Candeina nitida	Reeve Net	0-200	
	Z-				
5	1466	Candeina nitida	Reeve Net	0-200	12 individuals
	Z-				
5	1467	Globigerinoides ruber	Reeve Net	0-200	Pink shell
_	Z-		_		
5	1468	Globigerinoides ruber	Reeve Net	0-200	Pink shell
5	Z-	Clabicacija sidag mekan	Daarra Mat	0-200	Dinle ab all
5	1469 Z-	Globigerinoides ruber	Reeve Net	0-200	Pink shell
5	1470	Globigerinoides ruber	Reeve Net	0-200	Pink shell
	Z-	Giorger mones ruber	Treeve fret	0 200	T HIK SHOT
5	1471	Globigerinoides ruber	Reeve Net	0-200	Pink shell
	Z-	O			
5	1472	Globigerinoides ruber	Reeve Net	0-200	Pink shell
	Z-				
5	1473	Globigerinoides ruber	Reeve Net	0-200	Pink shell
_	Z-		D 37	0.200	D: 1 1 11
5	1474	Globigerinoides ruber	Reeve Net	0-200	Pink shell
5	Z- 1475	Globigerinoides ruber	Reeve Net	0-200	Pink shell
<i>J</i>	Z-	Giovigei invides ruver	NCCVC INCL	0-200	I IIIK SIICII
5	1476	Globigerinoides ruber	Reeve Net	0-200	
	Z-	2.30 ger momes i moei	1100 / 0 1 / 0 /	0 200	
5	1477	Globigerinoides ruber	Reeve Net	0-200	
	Z-				
5	1478	Globorotalia menardii	Reeve Net	0-200	
	Z-				
5	1479	Globorotalia menardii	Reeve Net	0-200	
	Z-	Neogloboquadrina	D 37	0.200	
5	1480	dutertrei	Reeve Net	0-200	
5	Z-	Neogloboquadrina	Reeve Net	0-200	

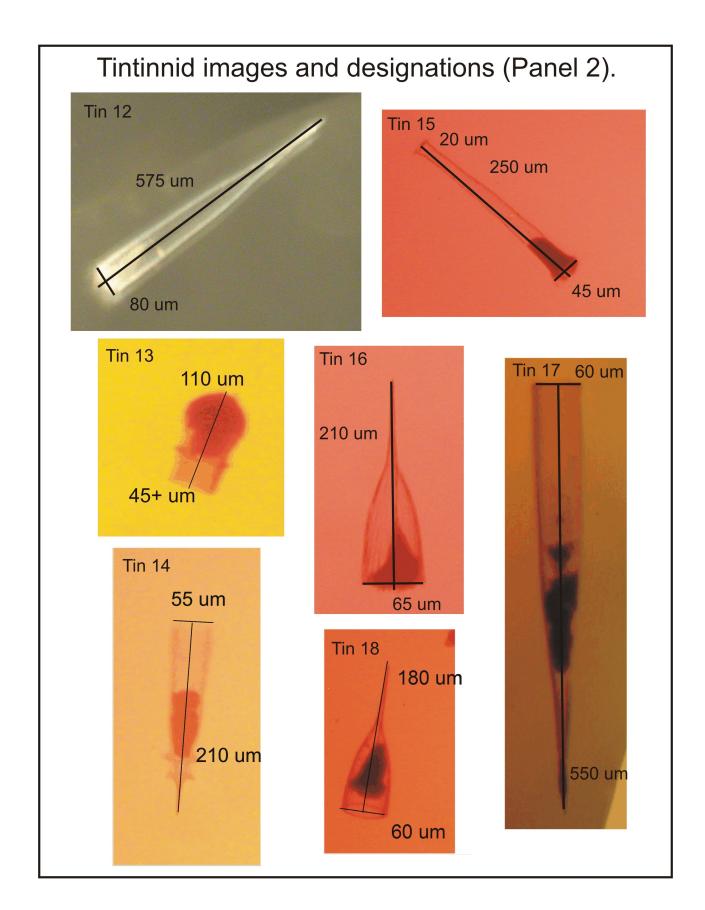
Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1481	dutertrei			
	Z-	Neogloboquadrina			
5	1482	dutertrei	Reeve Net	0-200	
	Z-	Globorotalia			
5	1483	truncatulinoides	Reeve Net	0-200	right coiling
	Z-	Globorotalia			
5	1484	truncatulinoides	Reeve Net	0-200	right coiling
	Z-	Globorotalia			
5	1485	truncatulinoides	Reeve Net	0-200	right coiling
	Z-	Globorotalia			
5	1486	truncatulinoides	Reeve Net	0-200	right coiling
_	Z-	Globorotalia			
5	1487	truncatulinoides	Reeve Net	0-200	right coiling
_	Z-	Globorotalia		0.00	
5	1488	truncatulinoides	Reeve Net	0-200	right coiling
_	Z-	Globorotalia	D 37.	0.200	
5	1489	truncatulinoides	Reeve Net	0-200	right coiling
_	Z-	Globorotalia	D 31.	0.200	
5	1490	truncatulinoides	Reeve Net	0-200	right coiling
_	Z-	Globorotalia	D N.	0.200	
5	1491	truncatulinoides	Reeve Net	0-200	right coiling
_	Z-		D N-4	0.200	
5	1492	Globigerinita glutinata	Reeve Net	0-200	
5	Z- 1493	Clobic quinita alutinata	Reeve Net	0-200	
3	Z-	Globigerinita glutinata	Reeve Net	0-200	
5	1494	Globigerinita glutinata	Reeve Net	0-200	
3	Z-	Giovigerinia giuimata	RCCVC INCL	0-200	
5	1495	Globigerinita glutinata	Reeve Net	0-200	
3	Z-	Giobigerinia giaimata	Recyc Ivet	0-200	
5	1496	Globigerinita glutinata	Reeve Net	0-200	
	Z-	Grootgerinia grannara	100101100	0 200	
5	1497	Orbulina universa	Reeve Net	0-200	
	Z-	O. Stillia tilli (C. St.	1100 / 0 1 / 01	0 200	
5	1498	Orbulina universa	Reeve Net	0-200	
	Z-	2.300000	1100 / 0 1 100	2 200	
5	1499	Orbulina universa	Reeve Net	0-200	
	Z-		22.24.44	2 = 3 0	
5	1500	Orbulina universa	Reeve Net	0-200	
	Z-	Globigerinoides			
5	1501	sacculifer	Reeve Net	0-200	
5	Z-	Globigerinoides	Reeve Net	0-200	

Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1502	sacculifer			
	Z-	Globigerinoides			
5	1503	sacculifer	Reeve Net	0-200	
	Z-	Globigerinoides			
5	1504	sacculifer	Reeve Net	0-200	
	Z-	Globigerinoides			
5	1505	sacculifer	Reeve Net	0-200	
	Z-	Globigerinoides			
5	1506	conglobatus	Reeve Net	0-200	
	Z-				
5	1507	Candeina nitida	MOC-1/4_T6_N8	0-70	
	Z-				
5	1508	Candeina nitida	MOC-1/4_T6_N8	0-70	
	Z-				
5	1509	Candeina nitida	MOC-1/4_T6_N8	0-70	
	Z-				
5	1510	Candeina nitida	MOC-1/4_T6_N8	0-70	
	Z-				
5	1511	Candeina nitida	MOC-1/4_T6_N8	0-70	
	Z-				
5	1512	Candeina nitida	MOC-1/4_T6_N8	0-70	
_	Z-				
5	1513	Candeina nitida	MOC-1/4_T6_N8	0-70	
_	Z-	Neogloboquadrina	3.50 G 4 /4 T 6 3.50		
5	1514	dutertrei	MOC-1/4_T6_N8	0-70	
_	Z-	Neogloboquadrina	3.60C 1/4 TC 310	0.70	
5	1515	dutertrei	MOC-1/4_T6_N8	0-70	
_	Z-	Neogloboquadrina	3.60C 1/4 TC 310	0.70	
5	1516	dutertrei	MOC-1/4_T6_N8	0-70	
_	Z-	Neogloboquadrina	MOC 1/4 TC NO	0.70	
5	1517	dutertrei	MOC-1/4_T6_N8	0-70	
_	Z-	Neogloboquadrina	MOC 1/4 TC NO	0.70	
5	1518	dutertrei	MOC-1/4_T6_N8	0-70	
5	Z-	Oubalina	MOC 1/4 TC NO	0.70	
5	1519	Orbulina universa	MOC-1/4_T6_N8	0-70	
_	Z-	Ouhadin a auriceana	MOC 1/4 T/4 NO	0.70	
5	1520	Orbulina universa	MOC-1/4_T6_N8	0-70	
5	Z-	Clobicavincidas	MOC 1/4 T/4 NO	0.70	nink shall
5	1521 Z-	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	pink shell
5	1522	Globigerinoides ruber	MOC-1/4 T6 N8	0-70	pink shell
5	1322 Z-	Globigerinoides ruber Globigerinoides ruber	MOC-1/4_16_N8 MOC-1/4_T6_N8	0-70	pink shell
ے	L -	Giovigerinoides ruber	1VIOC-1/4_10_IN8	U-/U	bilik shen

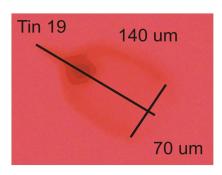
Sta.	DNA				
#	ID	species	Net type	Depth (m)	Remarks
	1523			• ` ` ′	
	Z-				
5	1524	Globigerinoides ruber	MOC-1/4 T6 N8	0-70	pink shell
	Z-				
5	1525	Globigerinoides ruber	MOC-1/4 T6 N8	0-70	pink shell
	Z-				
5	1526	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	pink shell
	Z-				
5	1527	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1528	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1529	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1530	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1531	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1532	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1533	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-				
5	1534	Globigerinoides ruber	MOC-1/4_T6_N8	0-70	
	Z-	Globigerinoides			
5	1535	sacculifer	MOC-1/4_T6_N8	0-70	
	Z-	Globigerinoides			
5	1536	sacculifer	MOC-1/4_T6_N8	0-70	
	Z-	Globigerinoides			
5	1537	sacculifer	MOC-1/4_T6_N8	0-70	
_	Z-	Globigerinoides	10001/1000	0.50	
5	1538	sacculifer	MOC-1/4_T6_N8	0-70	
	Z-	Globigerinoides		0.50	
5	1539	sacculifer	MOC-1/4_T6_N8	0-70	
_	Z-	Globigerinoides	10001/1000	0.50	
5	1540	sacculifer	MOC-1/4_T6_N8	0-70	
_	Z-	Globigerinoides	10001/1000	0.50	
5	1541	sacculifer	MOC-1/4_T6_N8	0-70	

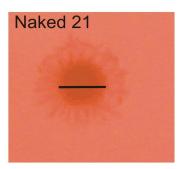
APPENDIX 4. Colonial radiolarians collected by diving that have had pieces preserved for DNA (frozen) and morphological (formalin and EtOH) analyses.

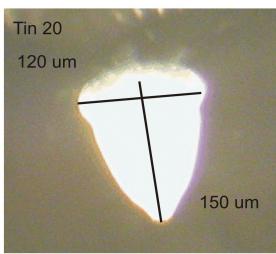

CMarZ (April	110-30th,	2006)						
Sample Name	Sation	Dive	Lat	Long	Date	Remark	Formalin	Etoh
Rad1	3	3	24.84	-60.14	4/19/06	Night	Y	Y
Rad2	3	3	24.84	-60.14	4/19/06	Night	Y	Y
Rad3	3	3	24.84	-60.14	4/19/06	Night	Y	N
Rad4	3	3	24.84	-60.14	4/19/06	Night	Y	N
Rad5	3	4	24.98	-60.54	4/20/06	Day	Y	Y
Rad6	3	4	24.98	-60.54	4/20/06	Day	Y	N
Rad7	3	4	24.98	-60.54	4/20/06	Day	Y	N
Rad8	3	4	24.98	-60.54	4/20/06	Day	Y	Y
Rad9	3	4	24.98	-60.54	4/20/06	Day	Y	Y
Rad10	3	4	24.98	-60.54	4/20/06	Day	Y	Y
Rad11	3	4	24.98	-60.54	4/20/06	Day	Y	Y
Rad13	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad14	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad15	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad16	3	5	24.96	-60.68	4/21/06	Day	Y	N
Rad17	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad18	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad19	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad20	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad21	3	5	24.96	-60.68	4/21/06	Day	Y	N
Rad22	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad23	3	5	24.96	-60.68	4/21/06	Day	Y	Y
Rad27	4	6	19.82	-54.72	4/23/06	Day	Y	N
Rad28	4	6	19.82	-54.72	4/23/06	Day	Y	Y
Rad29	4	6	19.82	-54.72	4/23/06	Day	Y	Y
Rad30	4	7	19.82	-54.47	4/24/06	Night	Y	Y
Rad31	4	7	19.82	-54.47	4/24/06	Night	Y	Y
Rad32	4	7	19.82	-54.47	4/24/06	Night	N	Y
							Total	48

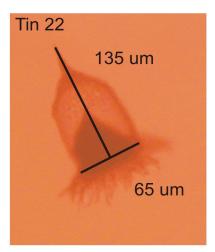

APPENDIX 5. Tintinnid images and designations followed by preliminary ID to family and genus if possible. Picture includes measurements of lorica length and lorica oral opening. Note: Non-live pictures are from Lugol's preserved samples and color is not indicative of living tintinnid.

```
TIN 1
Preliminary ID - Famliy: Dictyocystidae, Genus: Dictocysta
TIN 2a
Preliminary ID - Family: Undellidae, Genus: Undella
Preliminary ID - Family: Undellidae, Genus: Proplectella
TIN 3
Preliminary ID – Family: Cyttarocylidiae. Although ID is weak.
TIN 4 (No Figure)
Preliminary ID - This is probably same as TIN 2
TIN 5
Preliminary ID - Family: Codonellidae, Genus: Codennella
Preliminary ID - Family: Petalotrichidae?
TIN 7 (No Figure)
Preliminary ID – No ID yet. Need to look at preserved sample.
Preliminary ID - Family: Codonellopsidae, Genus: Codonellopsis
TIN 9
Preliminary ID - Family: Petalotrichidae, Genus: Petalotricha
TIN 10
Preliminary ID - No tentative ID yet
Preliminary ID - Family: Rhabdonellidae, Genus: Rhabdonella
TIN 12
Preliminary ID - Family: Xystonellidae, Genus: Xystonella
TIN 13
Preliminary ID - Family: Undellidae, Genus: Amplectella
TIN 14
Preliminary ID - Family: Xystonellidae, Genus: Xystoneliopsis
Preliminary ID - Family: Tintinnidae, Genus: Eutintinnus
Preliminary ID - Family: Rhabdonellidae, Genus: Rhabdonella
Preliminary ID - Family: Xystonellidae, Genus: Xystonella
TIN 18
Preliminary ID - Family: Rhabdonellidae, Genus: Rhabdonella
TIN 19
Preliminary ID - No preliminary ID yet
TIN 20
Prelilminary ID - No preliminary ID yet
NAKED 21
Preliminary ID - No preliminary ID yet
TIN 22
Preliminary ID - No preliminary ID yet
```


TIN 23 (No Figure)


Preliminary ID - No preliminary ID





Tintinnid images and designations (Panel 3).

APPENDIX 6. MOCNESS Deployment Log. Summary of 1-m, 10-m and 1/4-m MOCNESS Tows (local Date/Time). Net bar containment flaps and side deflector flags were installed on the 1-m MOCNESS starting with tow #3.

TOW	STATION	DATE	TIME (local)	LATITUDE (N) Start/End	LONGITUDE (W) Start/End	Depths Sampled (m)	Volume Filtered (m ³)	Comments
	L	1-n	n MOCNES					
1	1	13 April 06	0619	33° 31.467 33° 35.900	69° 57.678 69° 53.460	Net 0: 0000-1000 Net 1: 1000-0800 Net 2: 0800-0600 Net 3: 0600-0400 Net 4: 0400-0200 Net 5: 0200-0100	1784.1 1034.9 1154.8 1319.3 1155.1 655.1	No net responses on any net, but only one bar up at end.
						Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	414.0 384.5 504.9	
2	1	14 April 06	1803	33° 37.589 33° 33.904	69° 31.554 69° 38.33	Net 0: 0000-0993 Net 1: 0993-0797 Net 2: 0797-0600 Net 3: 0600-0400 Net 4: 0400-0200 Net 5: 0200-0100 Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	1652.9 802.4 924.9 820.4 1193.6 471.7 264.0 178.0 272.2	
3	2	16 April 06	0042	29° 59.711 29° 53.241	70° 01.648 70° 04.464	Net 0: 0000-0998 Net 1: 0998-0790 Net 2: 0790-0600 Net 3: 0600-0400 Net 4: 0400-0200 Net 5: 0200-0100 Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	912.8 667.2 942.9 1218.2 961.3 667.4 547.5 312.1 288.8	
4	2	16 April 06	0658	29° 52.09 29° 51.405	70° 04.530 70° 08.427	Net 0: 0000-1000 Net 1: 1000-0800	1233.7 782.8	Net 8 may have closed early.

TOW	STATION	DATE	TIME (local)	LATITUDE (N) Start/End	LONGITUDE (W) Start/End	Depths Sampled (m)	Volume Filtered (m ³)	Comments
			(cccar)			Net 2: 0800-0594 Net 3: 0594-0400 Net 4: 0400-0195 Net 5: 0200-0100 Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	754.8 821.9 896.0 412.1 203.7 150.9 305.8	Spontaneous net response at surface.
5	3	19 April 06	0904	25° 00.027 24° 52.667	59° 56.727 60° 08.148	Net 0: 0000-3300-0200 Net 1: 0200-0000 Net 2: Net 3: Net 4: Net 5: Net 6: Net 7: Net 8:	2618.2 4278.8 2730.9 1219.5 1561.6 2546.2 1880.0 2210.2 1965.4	None of nets worked right. Cables with swaged fittings not loaded in toggle correctly.
6	3	20 April 06	1114	24° 49.348 24° 49.445	60° 26.812 60° 26.800	Net 0: 0000-0070 Net 1: Net 2: Net 3: Net 4: Net 5: Net 6: Net 7:	923.3	Lost signal when net at 70m.
7	3	20 April 06	1244	24° 52.133 24° 57.692	60° 29.228 60° 32.159	Net 0: 0000-1000 Net 1: 1000-0800 Net 2: 0800-0600 Net 3: 0600-0400 Net 4: 0400-0200 Net 5: 0200-0100 Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	2626.4 1065.1 1091.8 1058.6 1019.9 806.7 410.8 373.3 407.2	

TOW	STATION	DATE	TIME (local)	LATITUDE (N) Start/End	LONGITUDE (W) Start/End	Depths Sampled (m)	Volume Filtered (m ³)	Comments
8	3	20 April 06	1903	24° 59.966 25° 03.294	60° 30.776 60° 35.552	Net 0: 0000-1000-0800 Net 1: 0800-0600 Net 2: 0588-0400 Net 3: 0400-0200 Net 4: 0200-0100 Net 5: 0100-0050 Net 6: 0050-0025 Net 7: 0025-0000 Net 8: did not fish	3068.0 1484.1 1093.2 976.6 1159.6 872.2 634.1 200.8 436.1	Frame banged going out. Clipped the net response going in. Two bars left at top at surface.
9	4	23 April 06	1521	19° 49.227 19° 45.723	54° 43.585 54° 37.532	Net 0: 0000-1000 Net 1: 1000-0800 Net 2: 0800-0600 Net 3: 0600-0400 Net 4: 0400-0200 Net 5: 0200-0100 Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	2655.6 363.1 1005.2 908.2 946.3 1230.3 1019.2 409.1 259.1	No net response with net 1 until 15 minutes later. Bar must have hung up and then dropped. Part of catch went into net 0 until bar dropped completely.
10	4	23 April 06	2152	19° 47.123 19° 49.426	54° 35.625 54° 28.627	Net 0: 0000-1000 Net 1: 1000-0800 Net 2: 0800-0595 Net 3: 0595-0400 Net 4: 0400-0200 Net 5: 0200-0100 Net 6: 0100-0050 Net 7: 0050-0025 Net 8: 0025-0000	4219.5 1189.9 927.7 852.1 989.3 892.9 479.7 269.6 326.7	
11	5	25 April 06	0916	14° 00.174 14° 01.042	54° 59.976 54° 55.089	Net 0: 0000-1000 Net 1: 1000-0799 Net 2: 0799-0600 Net 3: 0600-0400 Net 4: 0400-0198	1801.2 922.4 839.2 944.6 1043.7	Lots of water through net 7 at 25m because winch shut down due to

TOW	STATION	DATE	TIME	LATITUDE (N)	LONGITUDE (W)	Depths Sampled	Volume Filtered	Comments
			(local)	Start/End	Start/End	(m)	(m^3)	
						Net 5: 0198-0100	475.3	burning smell in
						Net 6: 0100-0050	666.4	winch room.
						Net 7: 0050-0025	1125.2	
						Net 8: 0025-0000	216.3	
12	5	25 April 06	1725	14° 02.499	54° 53.482	Net 0: 0000-1000	2093.2	
				14° 05.102	54° 48.879	Net 1: 1000-0800	1017.0	
						Net 2: 0800-0600	703.5	
						Net 3: 0600-0400	1189.4	
						Net 4: 0400-0200	1385.7	
						Net 5: 0200-0100	650.1	
						Net 6: 0100-0050	341.9	
						Net 7: 0050-0025	364.1	
						Net 8: 0025-0000	361.1	
13	5	27 April 06	1216	14° 24.772	53° 56.494	Net 0: 0000-0547	2232.5	Special
				14° 25.119	53° 52.530	Net 1: 0547-0527	366.5	"Staircase" tow.
						Net 2: 0527-0516	261.6	
						Net 3: 0515-0496	379.1	
						Net 4: 0496-0488	389.4	
						Net 5: 0489-0477	222.3	
						Net 6: 0477-0473	288.9	
						Net 7: 0473-0464	294.3	
						Net 8: 0464-0461	252.1	
		10-	m MOCNES	S Tows				
1	1	14 April 06	1606	33 38.552	-69 47.717	Net 0: 0000-5000	66763.1	Net 2 lost
		15 April 06	0745	33 40.243	-69 13.418	Net 1: 5000-4000	147296.9	codend. Net 3
		·				Net 2: 4000-3000 (lost	71942.6	closed at same
						bucket)	85192.9	time as net 2
						Net 3: broken tab	69562.8	due to broken
						Net 4: 3000-1000		tab. Net 3
								contents only
								contaminants.

TOW	STATION	DATE	TIME (local)	LATITUDE (N) Start/End	LONGITUDE (W) Start/End	Depths Sampled (m)	Volume Filtered (m ³)	Comments
2	2	16 April 06 17 April 06	1529 0416	29 49.77 29 29.273	-70 14.292 -70 29.875	Net 0: 0000-4315 Net 1: 4315-3500? Net 2: 3500-2750? Net 3: 2750-2000? Net 4: 2000-1000?	153129.9 34545.8 49126.7 37129.0 16365.3	Trouble with winch and shiphandling during descent of net 0. Long haul. Only net 1 true catch for depth. Others contaminated by gap.
3	3	19 April 06 20 April 06	2334 0925	24 50.385 24 47.482	-60 4.8107 -60 21.917	Net 0: 0000-5000 Net 1: 5000-4000 Net 2: 4000-3000 Net 3: broken tab - bucket lost Net 4: 3000-1000	44848.7	Codend lost from net 3 but tab broke off and it didn't fish anyway. Net 4 opened prematurely and fished more. Contamination issue apparently solved due to modifications to net system (flaps).
4	3	21 April 06	0028 1126	25 03.367 25 03.049	-60 37.536 -60 58.849	Net 0: 0000-5000 Net 1: 5000-4000 Net 2: 4000-3000 Net 3: 3000-2000 Net 4: 2000-1000	39640.7 38176.7 64340.60 49301.40 53127.6	
5	4	23 April 06	0142 1256	20 00.03 19 49.387	-54 59.805 -54 44.379	Net 0: 0000-4500 Net 1: 4500-4000 Net 2: 4000-3000 Net 3: 3000-2000 Net 4: 2000-1000	64469.1 33551.2 55232.6 52965.2 55329.2	

TOW	STATION	DATE	TIME (local)	LATITUDE (N) Start/End	LONGITUDE (W) Start/End	Depths Sampled (m)	Volume Filtered (m ³)	Comments
6	5	25 April 06 26 April 06	2156 1001	14 05.83 14 12.948	-54 46.800 -54 27.378	Net 0: 0000-5000 Net 1: 5000-4000 Net 2: 4000-3000 Net 3: 3000-2000 Net 4: 2000-1000	78111.6 70880.3 40927.9 44480.8 40588.7	Net 1 possibly opened early (1000m). Seems contaminated by shallow species. Net 2 has depthappropriate fauna, but little of it. Net 3 has mesopelagic fauna.
7	5	26 April 06 27 April 06	1401 0338	14 16.930 14 20.497	-54 21.960 -53 57.916	Net 0: 0000-5000 Net 1: 5000-4000 Net 2: 4000-3000 Net 3: 3000-1000 Net 4: 1000-0000	92206.6 54074.1 55370.8 114403.5 62573.2	Contamination minimal. Catch spectacular. Net 4 fished more shallow than usual on purpose.
		1/4-	m MOCNES	SS Tows				
1	1	13 April 06	1345	33° 37.270 33° 38.386	69° 51.803 69° 48.949	Net 0: 000-410 Net 1: Net 2: Net 3: Net 4: Net 5: Net 6: Net 7: Net 8:	315.8	Oblique tow down and up. Battery died on underwater unit.
2	1	14 April 06	1329	33° 35.803 33° 33.748	69° 24.606 69° 29.379	Net 0: 000-500 Net 1: 500-350 Net 2: 350-200 Net 3: 200-150 Net 4: 150-100	380.5 544.0 361.3 160.6 141.0	

TOW	STATION	DATE	TIME (local)	LATITUDE (N) Start/End	LONGITUDE (W) Start/End	Depths Sampled (m)	Volume Filtered (m ³)	Comments
						Net 5: 100-075 Net 6: 075-050 Net 7: 050-025 Net 8: 025-000	46.7 49.5 49.8 71.9	
3	1	14 April 06	2342	33° 34.251 33° 33.144	69° 38.859 69° 38.968	Net 0: 000-290 Net 1: Net 2: Net 3: Net 4: Net 5: Net 6: Net 7: Net 8:	653.5	Lost signal with underwater unit. Aborted tow.
4	2	15 April 06	1756	29° 59.994 29° 59.270	69° 59.92 69° 59.12	Net 0: 000-249 Net 1: Net 2: Net 3: Net 4: Net 5: Net 6: Net 7: Net 8:	186.9	Underwater unit stopped working. Used catch as 'live' tow.
5	5	26 April 06	1027	14° 13.542 14° 15.430	54° 26.688 54° 24.227	Net 0: 000-500 Net 1: 500-300 Net 2: 350-200 Net 3: 200-150 Net 4: 150-100 Net 5: 100-075 Net 6: 075-050 Net 7: 050-025 Net 8: 025-000	852.8 359.0 157.7 ng ng ng ng	Flow meter stopped working at 197m depth. Catch is good, but don't know volume filtered.
6	5	27 April 06	0612	14° 23.793 14° 28.635	53° 56.63 53° 55.039	Net 0: 000-350 Net 1: 350-230 Net 2: 230-170	668.4 152.6 186.5	Not much in nets. "Microbial paradise

April 2006

TOW	STATION	DATE	TIME	LATITUDE (N)	LONGITUDE (W)	Depths Sampled	Volume Filtered	Comments
			(local)	Start/End	Start/End	(m)	(m^3)	
						Net 3: 170-150	107.4	invisible to the
						Net 4: 150-120	116.1	naked eye."
						Net 5: 120-110	102.9	
						Net 6: 110-090	104.2	
						Net 7: 090-070	100.0	
						Net 8: 070-000	139.5	

APPENDIX 7. Pelagic Fish.

	Station 1	Station 2	Station 3	Station 4	Station 5	Cruise
Species	Totals	Totals	Totals	Totals	Totals	Totals
Argyropelecus aculeatus	2	15	0	2	6	25
Argyropelecus gigas	0	0	0	0	5	5
Argyropelecus hemigymnus	2	12	10	11	13	48
Argyropelecus larva	0	0	2	1	4	7
Ariosomma leptocephalus	0	0	0	1	0	1
Aristostomias xenostoma	0	0	0	0	1	1
Astronesthes cf indicus	0	0	0	0	1	1
Astronesthes juvenile	0	0	0	0	2	2
Astronesthes micropogon	0	0	0	0	1	1
Astronesthes similis	0	0	0	0	1	1
Avocettina infans	0	2	0	0	0	2
bathylagid larva	0	0	0	0	0	0
Benthalbella infans	0	0	1	0	0	1
Benthosema suborbitale	0	2	0	0	8	10
Bolinichthys indicus	1	0	0	0	0	1
Bolinichthys juvenile	0	0	0	0	3	3
Bolinichthys photothorax	0	2	1	1	7	11
Bonapartia pedaliota	0	3	1	1	1	6
Bothid larva	2	0	10	0	11	23
Brama caribbea	0	0	0	0	1	1
Bregmaceros atlanticus	0	0	1	2	8	11
Ceratias holboelli	0	0	0	0	1	1
Ceratiid male	0	0	1	0	0	1
Ceratioid larva	0	0	0	1	0	1
Ceratoscopelus warmingii	1	1	10	9	31	52
Cetostoma regani	0	0	1	0	0	1
Chauliodus danae	0	2	4	2	0	8
Chauliodus sloani	1	3	0	<u></u>	0	5
Chiasmodon niger	1	0	0	0	0	1
Coccorella atlantica	0	1	0	0	0	1
Coryphaena hippurus	0	0	1	0	0	1
Cryptopsaras couesii	0	2	0	0	0	2.
Cyclothone acclinidens	0	0	0	7	165	172
Cyclothone alba	0	0	1	2	0	3
Cyclothone braueri	138	412	214	142	367	1273
Cyclothone microdon	131	99	45	41	64	380
Cyclothone pallida	217	83	181	66		930
Cyclothone pseudopallida	18	52	1	0	23	94
Cyclothone (damaged)	1	0	1	1	0	3
Cyclothone larvae	0		0	0		10

	Station 1	Station 2	Station 3	Station 4	Station 5	Cruise
Species	Totals	Totals	Totals	Totals	Totals	Totals
Diaphus brachycephalus	0	0	1	1	6	8
Diaphus dumerilii	0	0	0	1	2	3
Diaphus effulgens	0	0	0	0	1	1
Diaphus cf. fragilis	0	0	0	1	0	1
Diaphus juv.	0	0	1	0	3	4
Diaphus lucidus	0	0	0	0	9	9
Diaphus rafinesquii	0	1	0	0	1	2
Diaphus roei	0	0	0	0	9	9
Diaphus subtilis	0	0	0	0	4	4
Diaphus taaningi	1	0	0	0	0	1
Diplophos taenia	0	0	0	0	1	1
Diretmus argenteus	0	0	0	1	0	1
Dolicholagus longirostris	1	1	0	0	2	4
Echeneid juvenile	0	0	0	1	0	1
Eel leptocephalus larva	1	2	5	3	14	25
epigonid larvae	0	0	0	1	0	1
Eurypharynx pelecanoides	0	0	0	0	2	2
Eustomias (Biradiostomias) sp.	0	0	0	1	0	1
(dam)						
Eustomias fissibarbis	0	1	0	0	0	1
Eustomias macrurus	0	0	0	0	1	1
Eustomias obscurus	1	1	0	0	0	2
Eustomias postlarva	0	0	0	1	0	1
Exocoetus obtusirostris	0	0	0	1	0	1
fish larvae - TBD	33	4	40	66	77	220
Gempylid juvenile	0	0	2	1	0	3
gigantactinid male	0	0	0	0	2	2
Gigantura indica	0	0	0	0	2	2
Gonichthys cocco	0	0	0	1	0	1
Gonostoma atlanticum	0	0	0	0	2	2
Himantolophid male	0	0	0	1	0	1
Howella brodiei	0	0	1	0	3	4
Hygophum benoiti	0	1	0	0	0	1
Hygophum hygomii	10	7	0	0	0	17
Hygophum macrochir	0	0	0	1	5	6
Hygophum reinhardtii	0	0	2	0	1	3
Hygophum taaningi	1	0	1	0	10	12
Hyporhamphus juvenile	0	0	0	0	3	3
Ichthyococcus ovatus	0	0	0	0	1	1
Idiacanthus fasciola	0	2	0	1	8	11
Lampadena luminosa	0	0	0	0	1	1
Lampanyctus alatus	0	0	0	0	2	2

	Station 1	Station 2	Station 3	Station 4	Station 5	Cruise
Species	Totals	Totals	Totals	Totals	Totals	Totals
Lampanyctus juvenile	0	0	0	0	2	2
Lampanyctus nobilis	0	0	0	0	8	8
Lampanyctus photonotus	0	0	12	3	4	19
Lampanyctus pusillus	0	8	0	1	2	11
Lepidophanes guentheri	0	2	1	2	75	80
Leptostomias sp. nov	0	0	0	0	1	1
Linophryne sp. male	1	1	0	0	0	2
Lobianchia dofleini	0	25	0	0	0	25
Lobianchia gemellarii	0	2	0	1	2	5
Lophiiform larva	0	1	0	0	0	1
Lophodolos acanthognathus	1	0	0	0	0	1
Macroparalepis cf "brevis"	0	0	1	0	0	1
Malacosteus niger	0	0	0	0	2	2
Margrethia obtusirostre	0	0	0	1	1	2
Maulisia juvenile	0	1	0	0	3	4
Melamphaes TBD	5	5	5	3	3	21
Melamphaid juvenile	0	0	2	0	0	2
Melanonus zugmayeri	1	1	0	0	1	3
Myctophid larvae	18	26	7	6	55	112
Nannobrachium atrum	0	0	2	0	0	2
Nannobrachium cuprarium	2	4	3	1	0	10
Nemichthyid leptocephalus	0	1	0	0	0	1
Nesiarchus nasutus	1	1	0	1	1	4
Notolychnus valdiviae	2	0	1	2	9	14
Notoscopelus resplendens	1	1	0	0	0	2
Omosudis lowei	1	0	0	0	0	1
oneirodid male	0	0	0	0	3	3
Paralepidid juvenile	1	1	0	0	0	2
Paralepis brevirostris	0	0	1	0	1	2
Perciform larva	1	2	0	0	0	3
Photonectes cf. achirus	0	0	0	0	1	1
Photonectes braueri	0	1	0	0	0	1
Photonectes dinema	0	1	0	0	0	1
Photostomias goodyeari	0	1	0	0	0	1
Platytroctes apus	0	1	0	0	0	1
Poromitra capito	0	0	0	1	0	1
Poromitra crassiceps	0	1	1	0	0	2
Pseudoscopelus "sp. A" cf.	0	1	0	0	0	1
obtusifrons						
red-tailed fish larva - TBD	1	0	0	0	0	1
Regalecus glesne	0	1	0	0	0	1
Rhadinesthes decimus	0	0	0	1	0	1

	Station 1	Station 2	Station 3	Station 4	Station 5	Cruise
Species	Totals	Totals	Totals	Totals	Totals	Totals
Rhynchactis male	0	0	1	0	0	1
Rondeletia bicolor	0	0	0	0	1	1
Saccopharynx leptocephalus	0	0	1	0	0	1
Scombroid larva	0	1	1	1	2	5
scopelarchid juvenile	0	0	0	0	1	1
Scopeloberyx opisthopterus	6	0	0	0	2	8
Scopeloberyx robustus	1	0	0	0	0	1
Scopelogadus mizolepis mizolepis	0	0	2	1	0	3
scorpaenid larva	0	0	0	0	1	1
Serrivomer beanii	0	1	1	0	2	4
Sigmops elongatum	1	0	0	0	3	4
spotted larvae - TBD	2	0	0	0	0	2
stalk-eyed larva	0	0	0	0	0	0
sternoptychid larvae	0	1	2	0	0	3
Sternoptyx diaphana	3	16	2	6	9	36
Sternoptyx juvenile	1	1	1	1	1	5
Stomias affinis	0	0	0	0	1	1
stomiid larvae	2	5	2	0	2	11
stomiiform larvae	0	20	0	0	0	20
Stylephorus chordatus	0	0	0	0	1	1
Tetraodontiform juvenile	1	0	0	0	0	1
Thunnus juvenile	0	0	0	1	0	1
Valencienellus tripunctulatus	0	2	6	0	5	13
Vinciguerria nimbaria	0	0	0	0	1	1
Vinciguerria poweriae	1	2	0	1	2	6
no. species	36	49	39	45	72	127
no. fish	617	859	594	408	1487	3965
biomass (g)	32.96	87.89	12.15	174.68	187.4	495.08